
Reflective Components for Designing
Behaviour in Video Games

Proyecto Fin de Máster en Sistemas Inteligentes

Máster en Investigación en Informática
Facultad de Informática

Universidad Complutense de Madrid

Autor: David Llansó García
Director: Pedro Antonio González Calero

Co-director: Marco Antonio Gómez Martín

Curso 2008/2009

Documento maquetado con TEXiS v.0.9.

Reflective Components for Designing
Behaviour in Video Games

Master Degree’s Final Project in Intelligent Systems

Master Degree in Computer Science Research
Computer Science Faculty

Universidad Complutense de Madrid

Author: David Llansó García
Director: Pedro Antonio González Calero

Co-director: Marco Antonio Gómez Martín

Course 2008/2009

Abstract

Developing the AI for non-player characters in a videogame is a collaborative task be-
tween programmers and designers and most of the time, there is a tension between them.
Nowadays, the industry is making a big effort to separate the collaboration between both
groups so programmers need to provide designers with tools which will allow them to
design character behaviours. Consequently, the information, about the logic of the game,
would be duplicated in the game code and in the field of these tools, leading to errors
when someone who modifies the information of one field forgets to replicate it in the
other.

On the other hand, Behaviour Trees are an expressive mechanism that let design-
ers create complex behaviours by defining an AI driven by goals, in which complex
behaviours can be created combining simpler ones using a hierarchical approach. As
well, we propose the use of the Component-Based Approach, that is a widely used tech-
nique for creating characters in commercial video games avoiding the problems of typical
object-management systems, which are based on an inheritance hierarchy.

In order to fix the problem of the duplicated and separated information, we propose
to gather all the information in components by extending the IComponent interface. In
this way, entities built by components will be those responsible of providing design tools,
or maybe other systems, with all the information that they need for working properly.

Both a general proposal with the basic tenets of our reflective component-based system
and two concrete systems of this approach are presented. The first one validates asso-
ciations between Behaviour Trees and characters whilst the second one provides, helped
by a planner, different choices to achieve a goal with a character in a concrete scenario.

Key words: Reflective, Components, Authoring, Behaviour, Tree, Videogame, AI,
Artificial Intelligent.

v

Resumen

El desarrollo de IA para NPCs en videojuegos es una tarea colaborativa entre diseñadores
y programadores, en la que suele haber conflictos entre los dos grupos. Hoy en día, la
industria está haciendo un gran esfuerzo para separar la colaboración entre ambos y para
ello, los programadores deben proporcionar herramientas que permitan a los diseñadores
crear comportamientos. Por tanto, la información de la lógica de juego estará duplicada
en el código y en las herramientas de diseño, conduciendo a errores cuando alguien que
modifica la información en un campo olvida replicarla en el otro.

Por otro lado, los Arboles de Comportamiento son un mecanismo que permite a los
diseñadores crear comportamientos definiendo una IA guiada por objetivos, en la que los
comportamientos complejos pueden ser creados combinando otros más simples usando
una propuesta jerárquica. También, proponemos usar un sistema basado en componentes,
lo cual es una técnica muy usada en videojuegos comerciales, evitando así los problemas
de los típicos sistemas orientados a objetos con jerarquía de herencia.

Para solucionar el problema de la separación y duplicación de información, pro-
ponemos reunir toda la información en los componentes extendiendo la interfaz del
IComponent. Así, las entidades construidas por componentes serán las responsables de
proporcionar a las herramientas de diseño, u otros sistemas, toda la información que
necesiten para trabajar adecuadamente.

Se presenta tanto una propuesta general con los pilares básicos del sistema basado en
componentes autodescritos, como dos sistemas concretos de esta propuesta. El primero
valida asociaciones entre Arboles de Comportamiento y NPCs mientras el segundo pro-
porciona, ayudado por un planificador, las diferentes maneras que tiene un NPC de
alcanzar un objetivo en un escenario concreto.

Palabras clave: Componentes, Autodescriptivos, Autoría, Árbol, Comportamiento,
Videojuego, IA, Inteligencia Artificial.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Behaviour Trees . 2
1.3 Component-Based Approach . 3
1.4 The Proposal: Reflective Components . 4

2 State of the Art 7
2.1 Introduction . 7
2.2 Authoring Tools in Different Fields . 8

3 Components 13
3.1 Traditional Object-Management Systems 13
3.2 The Component-Based Approach . 14

3.2.1 The blueprints File . 15
3.2.2 The archetypes File . 15
3.2.3 Messages . 18

3.3 A Basic Implementation . 19

4 Behaviour Trees 23
4.1 From Finite State Machines to Behaviour Trees 23
4.2 Composite Nodes of Behaviour Trees . 25
4.3 Behaviour Tree Executer . 27

5 Reflective Components 29
5.1 Gathering Information . 29
5.2 A Reflective Component-Based System Develop Methodology 30

6 Self-Validated Behaviour Trees through Reflective Components 33
6.1 Failures in Behaviour Trees caused by Intrinsic Nature of the Entity . . . 33
6.2 Implementation of Extended Reflective Components and Entity 35

6.2.1 Coarse-Grained Approach . 35
6.2.2 A Fine-Grained Approach . 36

ix

x Índice

6.3 Implementation of Extended Behaviour Trees 38
6.4 Example . 42
6.5 Different Uses . 46

6.5.1 During the Design Time . 47
6.5.2 During the Execution of the Game 48

7 Generating New Behaviours by Means of Abstracted Plan Traces 55
7.1 Planning with Ontologies to Support the Behaviour Tree Creation 56
7.2 Generating the Planning Domain by Using Reflective Components 57
7.3 Implementation . 62
7.4 Different Uses . 64

7.4.1 During the Design Time . 64
7.4.2 During the Execution of The Game 69

8 Conclusions 71

A Javy 2 code 75
A.1 Messages . 75
A.2 Component . 78

Bibliography 85

List of Figures

3.1 Traditional inheritance tree. 14
3.2 Some entities built by components in a blueprints file. 16
3.3 An archetypes file for the previous entities. 17

4.1 Behaviour Tree of “wood harvesting” type. 27
4.2 CHumanEnemy entity built by components. 28

6.1 Table scheme with actions and lists of components that are able to carry
out these actions. 36

6.2 Labourer entity built by components. 43
6.3 Behaviour Tree 1 of “coal harvesting” type. 44
6.4 Behaviour Tree of go sounding behaviour. 48
6.5 Partial list of blueprints file . 49
6.6 Behaviour Tree of go sounding behaviour. 50
6.7 Partial list of blueprints file . 51
6.8 Behaviour Tree of go sounding behaviour. 51
6.9 Behaviour Tree of to fly and to take. 52
6.10 Behaviour Tree of to move, to climb and to take. 53

7.1 Ontology that defines the domain vocabulary 56
7.2 Partial list of blueprints file . 59
7.3 Planning operators corresponding to basic behaviours. 61
7.4 Interactive process to create Behaviour Trees 65
7.5 Example of a behaviour tree creation (first version) 67
7.6 Example of a behaviour tree creation (second version) 68
7.7 Example of a behaviour tree creation (final version) 69

xi

Chapter 1

Introduction

1.1 Motivation

From the beginning of the game industry and for many years, the most common way of
creating behaviour of characters in a game was through programming languages as the
rest of the game engine is developed. It has always been a very big problem, and contin-
ues to be so, because behaviours are only developed by people with specific knowledge
(programmers). When a videogame is being developed, there is a group of people (de-
signers) which are those responsible of design all the concepts of a videogame including
the character behaviours. However, designers do not usually have programming skills.
Consequently, in order to develop character behaviours, a communication process be-
tween designers and programmers must exist. This process can be very long and tedious
due to it usually needing many revisions before a behaviour is accepted. Implementing
ideas from other people is not easy if they are not perfectly specified.

To deal with the previous problematic situation, the coordination between designers
and programmers must be made easier. To this end, programmers should provide de-
signers with some tools that give them the possibility of developing character behaviours
for the final game without the need for learning difficult programming languages.

Another existing problem related to the hard-coded behaviours is that they take a
really long time to be developed and, as a result of this, videogames with hard-coded
behaviours usually have a lack of different character behaviours. Consequently, these
games turn into boring games when the user learns how the characters react in every
situation. Therefore, if designers were provided with good tools to develop character
behaviours, they would develop many behaviours for the same situations and in this way,
the process in which the user learned, how the characters react in every situation, would
be longer.

Because of this, the game industry has begun to develop new ways of creating char-
acter behaviours (Diller et al., 2004). Many games include the option of changing some
parameters of the game but this method does not allow designers, or users, the real pos-
sibility of designing new behaviours. On the other hand, API’s or scripting languages

1

2 Chapter 1. Introduction

are much more flexible ways of programming behaviours, but the problem is that design-
ers must learn difficult languages that can lead to errors and they are very difficult to
debug, which is not good enough. Other studios use special languages (Hap, ABL, etc.)
created with the purpose of modelling behaviours (O.Riedl and Stern, 2006; Ontañón et
al., 2007), which are conceptually the same as Hierarchical Task Networks that are used
in Cavazza et al. (2002a), Cavazza et al. (2002b) and Cavazza et al. (2001). The problem
still being the same as in scripting: Designers must learn a new language, and debugging
behaviours is a very difficult task.

Due to these reasons, the game industry has introduced tools with graphical interfaces
in recent years, in order to simplify the way in which designers develop behaviours and
in order to avoid the errors produced during manual programming or scripting. The goal
of these tools is to turn the graphical behaviours created by designers into a concrete
scripting or special language.

In the majority of games of the last decade, Finite State Machines have been the
technology of choice for developing character behaviours (Dybsand, 2002; Houlette and
Fu, 2004; Rosado, 2004). They are easy to program, fast to execute and game designers
feel comfortable designing them so they appear the best choice. Unfortunately, Finite
State Machines do not scale as well as games need when the NPC’s behaviours becomes
too complex, and they do not allow easily adding and removing states, or reusing states
in other Finite State Machines for different behaviours.

1.2 Behaviour Trees

In order to fix these problems, Behaviour Trees have been proposed as an evolution of
Finite State Machines (Isla, 2005). Thus, Behaviour trees are an expressive mechanism
that let designers create complex behaviours along the lines of the story they want to
tell. They basically define an AI driven by goals, in which complex behaviours can be
created combining simpler ones using a hierarchical approach. Nodes in a Behaviour Tree
represent behaviours, where an inner node is a composite behaviour and a leaf in the
tree represents a final action that the NPC must execute.

To promote reusability, behaviours do not include the conditions that lead to transi-
tions. Those conditions are represented as guards in nodes of the tree. In this way, the
same behaviour can be used in different contexts with different guards. To further pro-
mote reusability, behaviours may be parametrized either hard-coded during design time
or during the execution of the tree by other sophisticated behaviours that are executed
before. So, in a particular context parameters are bound to actual values in the virtual
environment.

There are many kinds of composite nodes described in the literature of Behaviour
Trees, but in this thesis we only require four kinds of composites: sequences, parallels,
static priority lists and dynamic priority lists. A sequence is a list of behaviours that
must be executed in the order that they were defined. In the same way, a parallel node is
another list of behaviours and all of them have to be executed in parallel at the same time.
Meanwhile, static and dynamic priority lists are a composite node that would evaluate

1.3. Component-Based Approach 3

its children guards in order and would activate the first child which its guard was true.
The difference between them is that a static priority list only evaluates the guards the
first time while a dynamic priority list re-evaluates the guards periodically and if in the
execution of a child another more priority child would be able to be executed, the actual
branch of the tree would be aborted and the higher priority child would be launched.

For all these reasons we promote the use of Behaviour Trees. Nevertheless, they ap-
pear as a mechanism too complex for non programmers (Isla, 2005, 2008) so programmers
should provide designers with graphical tools for designing them. In the same way, they
are difficult to debug so some tests should be checked when a Behaviour Tree has been
created and in this way, designers would feel more confident with their creations.

1.3 Component-Based Approach

On the other hand, we propose the use of the Component-Based Approach, which is
a widely used technique for creating characters and game entities in commercial video
games. This proposal leaves behind the tendency of typical object-management systems,
which are based on an inheritance hierarchy, where all different kinds of entities derive
from the same base class. In this way, we drop out some of the disadvantages of the class
hierarchy that are, among others, an increase in the compilation time (Lakos, 1996), a
code base difficult to understand and big base classes (Valve Software, 1998).

In the Component-Based Approach, every entity of the game can be seen as a compo-
nent container in which every component represents a skill or ability that the entity has.
These components inherits from the same IComponent interface, so for the point of view
of the entity, it has a list of IComponents, and every entity is in turn an instance of the
same Entity class. Due to a component representing an ability, for creating a new entity,
designers only need to select which components the entity would have. For example, an
entity that represented a door in the game would have a Graphic component in order
to be rendered, a Physic component in order to be collided with other entities and a
Logic-Door component in order to allow other entities to open and close itself.

Instead of using methods to invoke different functionalities of entities, the Component-
Based Approach use message passing to execute the different functionalities of the com-
ponents. Consequently, entities can be seen as message broadcaster, because they are
those responsible of resending the messages to every component that they have. For
example, if a character wanted to open a door, it would not invoke the open() method
of the Door entity because it does not exist. Instead of that, the character would pass
a Open message to the Door entity and the Logic-Door component would receive it and
would be the component responsible of opening the door sequentially during successive
cycles by sending Move-To messages periodically to the rest of the components.

4 Chapter 1. Introduction

1.4 The Proposal: Reflective Components

Having in mind the increasing tendency of tools for modelling behaviour, and the need
of making them better, we propose a new system that eases in the building of new design
tools end even it helps to develop systems that provide fixes needed during the execution
of the game. The system is called reflective component-based system and is based in
components that can describe themselves in more than one way.

When tools, with the purpose of creating behaviours, are building, knowing, which
kinds of entities the game would have, is necessary. It is obvious because as entities are
different in between, they would be provided with different behaviours. So the process
through this tools are building is a little bit dangerous because all the knowledge about
entities, created by components for the game engine, must be duplicated in the tool.
The problem of this is that if a new entity was added to the game or an existing entity
was modified, this information should be added also to the tool. It could lead to errors
because the person that modify the content of the game can forget to replicate it into the
tool and even worse, the person responsible of changing the tool can be another person
that has to be informed of the changes.

Summarizing, Reflective Components methodology consist of adding new methods to
the IComponent interface: these methods that allow it to describe itself in the means that
the different tools, which use it, need. In this way, the person who added a new entity
only should have to make an extra work if he needed to create a new component for
the entity and, in this case, he only would need to fill the method, or methods, that the
concrete IComponent interface required. After that, the concrete reflective component-
based system would be the one responsible of creating automatically the knowledge that it
needed from the components of the entities, or directly use them to extract the knowledge
during its execution.

To reinforce our proposal, we have specified two concrete reflective component-based
systems. The first system (Llansó et al., 2009) is used to validate Behaviour Trees over a
concrete entity prior to the execution of the tree. In the process of validating Behaviour
Trees, the different branches of the tree are covered. Their leaves (final nodes which
contains an action) are checked with the entity, looking for possible failures caused by
intrinsic limitations of the entity. Then, depending on the tool that has been proposed,
failures would be reported, fixed or ignored. As every component is considered as a
skill that an entity has, it is easy to assume that every action of the tree can be carried
out by one (or more) specific component. Consequently, the check is done by asking
the entity if it is able to carry out the actions of the tree and, in turn, the entity ask
it to its components. For this propose, the IComponent interface is extended with the
canComponentCarryOut() method that every specific component class must implement.

With this technique, designers would have an extra check that would assist them,
with a tool, when creating behaviour trees and NPCs. Due to the check would be done
before the execution of the behaviour tree, designers would be more confident about the
correct link between NPCs and Behaviour trees. During the execution of the game the
system would be used to detect failures in Behaviour Trees as soon as possible in order

1.4. The Proposal: Reflective Components 5

to fix them avoiding the game to crash.
The second example (Sánchez-Ruiz et al., 2009a,b) specify a system that would be

able to deal with Behaviour Trees by generating different solutions, to achieve goals,
having into account the different scenarios in where the entity could stay. This proposal
consists on the use of a combination of planning and ontologies. A planner would be
able to suggest a set of plans that might be easily turn into Behaviour Trees. Then, the
system could be adapted for design tools that helped designers in the task of creating be-
haviour trees, or the system could be added to the game engine for suggesting alternative
behaviours to replace those that were not able of being carried out.

In this system the IComponent interface is extended with two methods that are used
with the purpose of generating all the information that the planner needs to infer specific
plans for the entity that needs a new way to achieve a goal.

The rest of the thesis runs as follow: In Chapter 2 the state of the art of the design
tools is raised. Then in Chapter 3, the Component-Based Approach is widely explained.
After, in Chapter 4 the Behaviour Tree concept that is used in the rest of the thesis
is described. Next, in Chapter 5 we propose the basic tenets, in which our Reflective
Components proposal is supported. Following, in Chapter 6, the first concrete reflective
component-based system is told while the second one is in Chapter 7. Finally, in Chapter 8
the conclusions and the future work is shown. Notice that in Appendix A you will find
some code as an example of Reflective Components implemented in a serious videogame
called Javy 2 that is in develop in our department.

Chapter 2

State of the Art

The traditional method of creating AI, created by programming code, makes the process of creating
new behaviours slow and tedious. Furthermore, it usually needs many revisions for removing bugs,
and it is limited to people with programming skills. Due to the need of easing the creation of character
behaviour, during the recent year, some design tools have arisen. These tools allow people without
programming skills creating behaviours. Nevertheless, even there is a lack of good and easy design
tools so the industry is in continuous developing looking for new ways to design character behaviours.

2.1 Introduction

From the beginning of the game industry and for many years, the most common way,
and maybe the unique, of creating behaviour for game characters was to represent these
behaviours through programming languages as the rest of the game engine is developed.
It has always been a very big problem, and continues to be so, because in the majority
of the cases, behaviours are only developed by people with specific knowledge (program-
mers). Generally, when a videogame is being developed, there is a group of people that
have to design every concept of the videogame, including character behaviours (design-
ers). The problem of this is that designers do not usually have programming skills. So,
a communication process between designers and programmers must exist in order to de-
velop character behaviours. This process can be very long and tedious due to it usually
needing many revisions before a behaviour is accepted. It is because both translate ideas
who one has to a paper is not easy and implementing ideas from other people is not easy
if they are not perfectly specified.

In order to avoid the tension produced between programmers and designers, due to
programmers envy the freedom that designers have to tell the story that they want and
because designers desire the capacity of directly specify behaviours without middlemen,
the industry is making a big effort to separate the collaboration between both groups
as much as possible. The only possible way to solve this problem is that programmers
provide designers with any kind of tool that let them mould the behaviours that they want

7

8 Chapter 2. State of the Art

to add into the final game without the need, in general, of learning difficult programming
languages. These tools are usually called authoring tools.

Nevertheless, the described problem is not the only motivation for creating these
tools. An increasingly tendency in commercial videogames, is to provide users with tools
that let them create or modify behaviours and characters. It is a fact in which the
final users are more interested about the product if it is provided with tools that gives
them any type of freedom for expressing their ideas and at the same time, it makes that
the contribution offered by users, increases the contents of the game and its continuous
evolution. So if programmers were capable of creating tools easy to use by people without
programming skills, the game would be easily sold.

On the other hand, users are nowadays more interested in multi-player games played
in virtual environments where different games are carried out and where users can face
to other users. One of the things that provoke this reaction, is that the hard-coded
character behaviours always react in the same way under the same circumstances. So
the user finally learns how NPCs act and a fantastic game quickly turn into a bored
game. But if people were provided with tools they would develop many behaviours that
could be attached to NPCs, so users would never learn how every character acts.

In next Section we are going to revise the authoring tools that the industry has
developed (Diller et al., 2004).

2.2 Authoring Tools in Different Fields

During the recent years, due to the increase of the interest in developing mechanism that
let people without programming skills creating behaviours different tools that conform
or model behaviours have been developed to be used by designers, users and even in the
researching field.

Next these tools are presented:

Parametrization

This is the first kind of way to “create” or modify behaviours. Some games use graphic
interfaces of easy use that allow people modifying some facets of the character components
such as factors that regulate when one or another behaviour is chosen. Nevertheless, the
user cannot really develop new behaviours, he can only modify some parameters that
change slightly the behaviour; but it is not a new behaviour.

API’s

Although this technique is not faithful to everything explained before, because they can
be only used by people with programming skills, this technique is a proposal in which
authors can create behaviours by using a programming language that is not necessarily
the same language that has been used to develop the game itself. In order to create a
behaviour, the author would have to implement an interface, with some methods, that

2.2. Authoring Tools in Different Fields 9

would be connected with the game by means transparent to him. In the researching field
this method has been widely used in FPS (First-Person Shooter) games such as Half Life
(Valve Software, 1998), Quake 3 or Unreal Tournament, in order to prove some cognitive
models that try to imitate human beings.

This mechanism is very useful for researching, but it does not solve the problem given
before: programming skills are needed.

Scripts

The use of scripts as a mechanism for authoring behaviours consists in to define the
behaviours of the NPCs in a high level language. It can be used after a previous training
by people without programming skills. Although it only permits to create a limited
behaviours, it is widely use by many commercial games (Quake, Unreal, etc.), which
have their own script languages that allow to expand gradually behaviours.

Into the script family, there are more specialized techniques such as triggers of
condition-response type or rule-based systems, a little bit more complicated but, at the
same time, better than triggers.

The worst problem of this technique is that to debug it, is very difficult because
it does not come with a debugger and hard-coded scripts may have many errors and
debugging them would be a tedious task.

Plans or Goals Hierarchies

Languages such as Hap or ABL (A Behaviour Language) (O.Riedl and Stern, 2006) are
high-level languages designed to create behaviours. In these languages, every activity
that has to be executed is considered a goal, and every goal is supported by one or more
behaviours that can carry it out. Each behaviour is, in turn, some steps (they can be
subgoals) that can be carried out sequentially or in parallel and it has son preconditions
that indicate whether the behaviour can be carried out or not.

Different researches use languages such as ABL (O.Riedl and Stern, 2006) or similar
ones (Ontañón et al., 2007) in order to create behaviours in a similar way as Hierarchical
Task Networks (Cavazza et al., 2002a,b, 2001)(HTNs) create it. HTNs also try to achieve
goals; in fact, a HTN is a plan with all the possible ways of achieving a goal. HTNs
can be explicitly described by means of scripts or they can be generated by tools that
automatically generate scripts from graphical interfaces (Kelly et al., 2008) similar to the
ones explained later.

Te possibility of committing failures of writing is the worst problem of these techniques
because these kinds of failures are terribly difficult to debug.

Graphic Tools

In addition, previous techniques, such as scripting or HTNs, have the inconvenient that
developing behaviours with them are a long and not intuitive process because it is not
easy to have in mind every relationship between rules, plans and behaviours. One solution

10 Chapter 2. State of the Art

in order to fix this problem is to provide the user with a graphical interface that shows
in an easier way these relationships and furthermore it avoids the failures committed by
hard-code behaviours.

In examples exposed in Cutumisu et al. (2005, 2006), how to create simple behaviours
both reactive and proactive by means of ScriptEase that provides a limited graphical
interface can be proved. The process it easier and it avoid failures of handwriting.

Other kinds of more elaborated and easier to use graphical tools are Szilas (2007); Fu
et al. (2003). In the first one, behaviour for different entities can be created by means
of graphs that represent actions and are linked with others to make sequences. It also
allows execution of more than one graph in parallel and makes that graphs trigger other
graphs. The system is easy for creating behaviours by non-programmer people but do
not create intelligent behaviours.

In the second research, Behavior Transition Nets (BTNs) are created in a similar
graphic way. BTNs are similar with Finite State Machine (FSM) in which actions con-
ditions and evaluation rule are defined. BTNs are a hierarchical mechanism in which an
action can be in turn a BTN. It is implemented with a stack to maintain all the states
that are in execution due to the hierarchy.

Intelligent Environments

The meaning of these researches is totally opposed to the previous ones because of,
instead of model behaviours for NPCs, they create intelligent object that control the
NPCs when the objects own them. As an example we can think in the Sims, a game in
which people can modify NPC behaviours by adding objects.

The problem of this approach is still being the same: users can not create new objects
and so that they cannot design new “behaviours”.

Learning

There are many games in which their NPCs are trained with various techniques and
learning algorithms, but the majority of them freeze this process before they are launched
to the market. However, games as Black & White use the reinforcement learning, where
the user can award or punish its creature and in this way teach it.

Although in the Black & White game the result is fabulous, this process could be a
little bit bored due to the learning process progress slowly and it must be attended. And
furthermore, there exists the possibility that the user tried to teach something and the
creature would learn another thing.

Authoring through Behaviour Examples

The motivation of these choices can be summarized in:

1. Simplicity. We only need to play a game in order to create a new behaviour.

2. Humanity. Behaviours are directly created from a game play.

2.2. Authoring Tools in Different Fields 11

In these kinds of system (Ontañón et al., 2007; Virmani et al., 2008; Goman et al.,
2006; Nakano et al., 2006; Priesterjahn et al., 2006; Priesterjahn, 2008; Priesterjahn et
al., 2008), the system has to store a game trace with the information about the actions
that the author have been doing during the game. At this moment only is stored the
basic actions and then, they will be processed with the purpose of inferring plans that
should be similar to the things that the author thought during the game. In this way,
some patterns are inferred and in the future the character which would be attached with
the inferred behaviour, would act in a similar way that the author did.

It is an interesting way of work for future researches, but in this thesis we are focused
into another system closer to the tools and systems that are being used in commercial
videogames. Those systems are Behaviour Trees and the Component-Based Approach
that will be treated in following chapters.

Chapter 3

Components

In the development of a virtual environment, the layer responsible of the management of the entities
is usually created using an object-oriented programming language such as C++. Over the years this
object-management system has been based on an inheritance hierarchy, where all different kinds of
entities derive from the same base class often called CEntity.

Nevertheless, as a consequence of this use of inheritance, some problems usually arise. These
problems are: an increase in the compilation time, a code base difficult to understand, big base
classes, leaf classes with unneeded functionalities and some leaf classes of the hierarchy practically
empty.

So, to fix all these problems, we propose the use of the component-based approach, which is also
a widely used technique for representing entities in commercial video games.

3.1 Traditional Object-Management Systems

Often, game’s entities require lots of functions to define their qualities and their rela-
tionships with other entities in the virtual environment, where the NPCs stand out in
complexity because they integrate skills such as sensing the environment, perceiving spa-
tial distribution, planning and executing actions and even communicating with other
characters.

Traditional object-management systems are often based on inheritance hierarchy
where all different kinds of entities derive from the same base class. Classes, directly
derived from the base class, are usually also abstract and they represent a split in the
tree between classes with different functionalities. During the game’s development, some
decisions are made about how to split the tree but, due to changeable nature of video
games, sometimes those decisions could become bad decisions in the future.

For example, if we had a traditional inheritance tree as in Figure 3.1 and we wanted
to add a new different type of enemy called HumanEnemy, with the same qualities that
the player such as driving vehicles, we would have to botch the tree, in order to allow it,
by giving most of the Player class content to Actor class. This kind of decision would
cause that our tree would become increasingly top heavy and it would cause as well that

13

14 Chapter 3. Components

Figure 3.1: Traditional inheritance tree.

classes at the bottom had some unnecessary qualities.
It would be worse if we wanted to allow the BreakableDoor class which is able to

take damage and to be destroyed like actors. If we wanted to allow it in the tree we
would have to botch the tree again because if it inherited from Actor class it could not
be opened like regular doors but if it inherited from Door class it could not be attacked
and destroyed.

Some of the consequences of this extensive use of class inheritance are, among others,
an increase in the compilation time Lakos (1996), a code base difficult to understand
and big base classes. To mention just two examples, the base class of Half-Life 1 Valve
Software (1998) had 87 methods and 20 public attributes while Sims 1 ended up with
more than 100 methods.

3.2 The Component-Based Approach

Due to all these problems developers tend to use a different approach, the so called
component-based systems West (2006); Rene (2005); Buchanan (2005); Garcés (2006),
which is a widely used technique for representing entities in commercial video games.
With the use of this approach, instead of having entities of a concrete class which define
their exact behaviour, now each entity is just a component container where every func-
tionality, skill or ability that the entity has, is implemented by a component. From the
developer point of view, every component inherits from the IComponent, while an entity
becomes just a list of IComponents.

As entities are now just a list of components and having in mind that every different
game entity is just an instance of the same class, which only differs from each others in
this list of components that it has, the creation of new kind of entities will be easier.

3.2. The Component-Based Approach 15

This is because it does not require any development task and the only the selection of the
different skills of the new entity is needed. Consequently it can be done data-oriented
using external files such us simple XML files in which there are a list of components per
each game entity type. This file is usually called blueprints file.

3.2.1 The blueprints File

As an example, the previous HumanEnemy, which highlighted the disadvantages of the tra-
ditional inheritance trees, becomes an entity sharing some components with the Player
entity: those components that defines the abilities that Player had and we wanted to
reuse through inheritance. Whereas the majority of the components such as Move-To,
Use-Vehicle, AnimatedGraphic would be shared between both entities, components
such as InputDeviceInterpreted or BTExecuter would be own of only one of them.
The InputDeviceInterpreted component would interpret the keyboard and the mouse
input events to make this entity manageable by the user whilst the BTExecuter com-
ponent would permit execute behaviour trees, which manage entities as we will see in
Chapter 4. In the same way, the Door and the BreakableDoor would share components
but, in this case, the BreakableDoor entity would have an extra component (Life) with
the purpose of giving the entity the ability of being breakable. Figure 3.2 shows a possible
description of these entities using a blueprints file.

Components may require some external information to configure themselves at the be-
ginning of their execution. For example, the Graphic component or the AnimatedGraphic
component shown in Figure 3.2 would need at least the name of the file with the 3D model
and animations. All this information is usually stored in the map file and it is passed to
the components during their initialization.

In order to allow fine-grained adjustment of the behaviour (or skills) of different enti-
ties, their definition may also require some external information to configure themselves.
This information would set the values of different attributes that components would
use as parameters of their behaviours. For instance, the Graphic component or the
AnimatedGraphic component shown in Figure 3.2 would need at least the name of the
file with the 3D model and animations, or, as an other example, the Carry component,
which provides the entity with the ability of picking up and transport objects, may use
an attribute that specify the strength of the entity.

3.2.2 The archetypes File

The initial values of all the parameters of the entities could be specified in the map files
of the different scenarios. However, if all the parameters had to be specified in every
map for every entity, the task could be too tedious. As a consequence of this, the most
common parameters of every entity are usually stored in a separated file that can be
seen as the file that describes the main characteristics of every entity. This file is usually
known as the archetypes file, an in this way, in the map file, only few parameters should
be specified by designers. In Figure 3.3 is shown the archetypes file that correspond to
the Entities of the blueprints file specified in Figure 3.2.

16 Chapter 3. Components

<BluePrints>
. . .

<en t i t y type = "Player">
<component type = "AnimatedGraphic"/>
<component type = "Physic"/>
<component type = " InputDev i ce Inte rpre t ed"/>
<component type = "Move−To"/>
<component type = "Carry"/>
<component type = " L i f e "/>
<component type = "Attack"/>
<component type = "Use−Vehic l e"/>

</ent i ty>
<en t i t y type = "HumanEnemy">

<component type = "AnimatedGraphic"/>
<component type = "Physic"/>
<component type = "BTExecuter"/>
<component type = "Move−To"/>
<component type = "DummyBehaviours"/>
<component type = "Carry"/>
<component type = " L i f e "/>
<component type = "Attack"/>
<component type = "Use−Vehic l e"/>

</ent i ty>
<en t i t y type = "Door">

<component type = "Graphic"/>
<component type = "Physic"/>
<component type = "DoorLogic"/>

</ent i ty>
<en t i t y type = "BreakableDoor">

<component type = "Graphic"/>
<component type = "Physic"/>
<component type = "DoorLogic"/>
<component type = " L i f e "/>

</ent i ty>
. . .

</BluePrints>

Figure 3.2: Some entities built by components in a blueprints file.

3.2. The Component-Based Approach 17

<archetypes>
. . .

<en t i t y type = "Player">
<a t t r i b name = " l i f e " value = "500"/>
<a t t r i b name = " s t r ength " value = " st rong"/>
<a t t r i b name = "model" va lue = " p layer . n2"/>
. . .

</ent i ty>
<en t i t y type = "HumanEnemy">

<a t t r i b name = " l i f e " value = "100"/>
<a t t r i b name = " s t r ength " value = "weak"/>
<a t t r i b name = "model" va lue = " laboure r . n2"/>
. . .

</ent i ty>
<en t i t y type = "Door">

<a t t r i b name = "model" va lue = "door . n2"/>
. . .

</ent i ty>
<en t i t y type = "BreakableDoor">

<a t t r i b name = " l i f e " value = "50"/>
<a t t r i b name = "model" va lue = "door . n2"/>
. . .

</ent i ty>
. . .

</archetypes>

Figure 3.3: An archetypes file for the previous entities.

Thus, in Figure 3.3, some parameters of different entities can be seen. A clear exam-
ple, of how parameters helps in the creation of new entities, is the different values that
Player and HumanEnemy have. As it was told before, Player and HumanEnemy entities
are very similar in between, and they share many components. The difference between
them is made through the parameters such as the graphic model, their points of life or
the strength.

During the initialization of an entity, it would receive their parameters and, in turn,
the entity would pass these parameters to its components. Every different component
would take the parameters that it needed, and would keep the entity that launched
it. In the case of the HumanEnemy and the Player, their AnimatedGraphic components
would take the model parameter, so their graphic representation on the environment
would differ. in the same way, their Life components would take the life parameter
and consequently the Player would have more points of life. Finally, their Carry and
the Attack components would take the strength parameter. This parameter would make
that the Player was stronger and it could take heavier objects and would perform better
attacks.

On the other hand, the only difference between both kinds of doors would be that

18 Chapter 3. Components

the BreakableDoor entity would have an extra parameter that would set its life into its
Life component. Their Graphic components would have the same model associated so
they would have the same graphic representation.

Figure 3.2 lists the section of one of such files that describes the ogre and goblin
entity. Entity’s description has two main parts, the list of components and the list of
default attributes’ values. As the figure shows, ogre and goblin entities share some of
the components (as Take and TakeCover). However, they have different attributes that
specify different final behaviours. For example, they differ on strength attribute that
influences the Take component. The weapon technology that is used, among others,
by MeleeAttack is also different (rudimentary versus both rudimentary and elaborate).
Finally, the difference of height predefines the kind of objects the TakeCover component
should consider as protections.

In this way, when the game loaded a new level from the map file (in which entities
would be described as in the archetypes file), it would iterate over the list of the level
entities and it would use the blueprints file for creating entities one by one. After one
entity was created, the game engine would have to initialize the entity with its parameters.
Thus, to gather all the parameters that the entity needed, the information of the map
file would be merged with the information of the archetypes file, having into account that
if the same parameter was in both files, the map file would have a higher priority and,
in this way, default parameters, which were into the archetypes file, could be changed by
overwriting them in the map file.

3.2.3 Messages

As the components are now generic objects with a common interface independent of their
functionality, the usual method invocation is not enough. We cannot have a piece of code
calling a method like MoveTo(), because no such method even exists. Now, there is a
component (Move-To in Figure 3.2) that is able to move the entity from one point to
another, but externally this is just a IComponent indistinguishable from other.

The communication is therefore performed in a different way, using message passing.
The IComponent is viewed as a communication port that is able to receive and process
messages. A message is just a piece of data with an identification and some optional
parameters (the implementation may vary from a plain struct with generic fields used
in different ways depending on the type of message to a CMessage base class and a
hierarchy of messages). Components have a method like handleMessage() that is called
externally to send the piece of information to it; depending on the concrete component,
the message would be ignored or processed accordingly. In this scenario, entities play the
role of the broadcaster of messages. Both internal components and external modules may
send messages to the entity that are automatically distributed among all its components.
An extra advantage of this approach is that it is thread friendly. Let us suppose that
a thread executing some code sent a message to a component. Instead of having it
immediately processed, it would be stored in the message queue of the component and
then when the logic thread launched the update of the entity, all the pending messages

3.3. A Basic Implementation 19

would be treated.
For instance, and following the HumanEntity in Figure 3.2, when the BTExecuter

component (that which provides the entity with the ability to be controlled by a behaviour
tree, Chapter 4) wanted to move the entity from one point to another, it would send a
message to the components of its entity. The component that implemented the ability
of movement (Move-To in our previous example) would intercept the message, would
calculate the path to be followed and would emit periodically UpdatePosition messages.

An example of working could be one in which the HumanEntity (or the Player) entity
in Figure 3.2 was attacked. When another entity attacked the HumanEntity entity the
Physic component would be informed by the Physic engine. The Physic component
would send a Collision message with the collided entity as a parameter so the entity
would transmit the message through the rest of their components. Consequently, the
components that had the ability to carry out that message (in this example it would be
the Life component) would accept and store it. Then, the Life component, during its
processing time, would check if the collision was referred to an attack. If this was the
case, the component would evaluate if the entity was wounded, and the degree of damage,
taking into account some skills of both entities such as attack and defence abilities or
strengths. If the attack caused any damage the Life component would update its values
(such as the life factor) and it would send a Wounded (or Death) message through the
entity. Thus, components such as Graphic component would accept and store it for a
future process, in which it would play the corresponding wounded (or death) animation.

3.3 A Basic Implementation

With the purpose of gathering all things that have been commented in the previous
section, and proposing a formalization of all of them, we have develop an approach of
implementation. In Figure 1, three different classes can be seen. In the first one, the
CommunicationPort class, are all the things related to the message passing. In other
words, every thing related to the communication is encapsulated for the IComponent
interface. This class has two virtual methods that specific components must implement
in order to specify with message they will accept (accept() method) and how these
messages will be processed (process() method). These methods are only used by the
other two methods of the class in order to store the messages for their future processing
(handleMsg() method) and to process all the stored messages (processMsgs() method).

As it have been commented previously, the CommunicationPort class is only the base
of the IComponent interface. So, this interface add four new virtual methods to control
the “life cycle” of the components. It is important to remark that these methods will be
probably overwrote by the final component classes. The activate() and deactivate()
methods will be used with the purpose of controlling the activity of the component.
For example, these methods are called by the entity when the map, to which the entity
belongs, are changed. In this way, entities of maps, which are not in use, can persist
without interfering with the execution of the current map.

Moreover, the spawn() method will be invoked after the creation of the entity (and

20 Chapter 3. Components

consequently the component) with the purpose of initializing it with the concrete param-
eters read from the map and archetypes files. Furthermore, in this method is assigned
which entity is the component’s owner and, in this way, allow the component for invoking
methods of the entity that has this component in its list. Finally, the tick() method will
be called periodically in order to check, process and update its values and maybe to send
messages to other components or entities.

On the other hand, the Entity class is a component container. So, the only propose,
of the majority of its methods, is to iterate over its components invoking one of their
methods. Examples of this are the spawn(), activate(), deactivate(), tick() and
emitMsg() methods while the addComponente() and removeComponente() methods are
used with the purpose of managing the list of components that the entity has.

class CommunicationPort {
List[Message] _msgqueue;
...
bool handleMsg(Message m) {

bool acepted = accept(m);
if(accepted)

_msgqueue.pushback(m);
return accepted;

}
void processMsgs() {

while(!_msgqueue.empty()) {
procesa(_msgqueue.front());
_msgqueue.popfront();

}
}
virtual bool accept(Message m) {

return false;
}
virtual void process(Message m) { }
...

};

class IComponent : CommunicationPort {
//component owner.
Entity _ent;
...
virtual bool activate() {

return true;
}
virtual void deactivate() { }
virtual void spawn(Entity e, List[Parameter] p, Map m) {

3.3. A Basic Implementation 21

_ent = e;
}
virtual void tick() { }
...

};

class Entity {
List[IComponent] _components;
Map _map;
...
void spawn(List[Parameter] p, Map m) {

_map = m;
for each IComponent c in _components {

c.spawn(this,p,m);
}

}
bool activate() {

bool activated = true;
for each IComponent c in _components {

activated = activated && c.activate();
}
return activated;

}
void deactivate() {

for each IComponent c in _components {
c.deactivate();

}
}
void tick() {

for each IComponent c in _components {
c.tick();

}
}
void addComponente(IComponent c) {

_components.add(c);
}
bool removeComponente(IComponent c) {

_components.remove(c);
}
bool emitMsg(Message m) {

bool emitted = false;
for each IComponent c in _components {

emitted = c.handleMsg(m) || emitted;

22 Chapter 3. Components

}
return emitted;

}
...

};

Code Block 1: Pseudo-code of the implementation

Chapter 4

Behaviour Trees

Behaviour trees have been proposed as an evolution of hierarchical finite state machines in order to
solve its scalability problems by emphasizing behaviour reuse Isla (2005). Thus, Behaviour trees are
an expressive mechanism that let designers create complex behaviours along the lines of the story
they want to tell.

Different nodes in a Behaviour trees represent different behaviours, where an inner node is a
composite behaviour (corresponding to an abstract state in a hierarchical finite state machines) and
a leaf in the tree represents an action (corresponding to a concrete state in a hierarchical finite state
machines).

One of the main advantages of having Behaviour Trees is that they explicitly represent the
behaviours of the entities. In that sense, behaviour trees can be treated as data and therefore they
are able to be analysed in order to extract information both in design time and during its execution.

Nevertheless, at the same time, behaviour trees appear as a too complex mechanism for non
programmers Isla (2005, 2008) so programmers must provide designers with design tools and different
system with the purpose of reducing the complexity of the mechanism.

4.1 From Finite State Machines to Behaviour Trees

Finite state machines have been the technology of choice for AI in games for decades
(Dybsand, 2002; Houlette and Fu, 2004; Rosado, 2004). The reason of this has been
that finite state machines are easy to program, fast to execute and game designers feel
comfortable designing them. Unfortunately, finite state machines do not scale well when
the NPC’s AI becomes too complex resulting in a combinatorial explosion of transitions.
Besides, Finite state machines do not easily allow either for adding and removing states,
or reusing states in different finite state machines. For example, if a new way of attack
was developed for being used in different behaviour trees, transitions would need to be
explicitly added from all the states in which was valid to go into that state.

In order to overcome the scalability problems in finite state machines, two steps are
done to turn finite state machines into behaviour trees:

1. Using procedural mechanisms to determine transitions, turning finite state ma-
chines into behaviour lists.

23

24 Chapter 4. Behaviour Trees

2. Introducing levels of abstraction, turning behaviour lists into behaviour trees.

Behaviour lists represent the AI for the NPC in form of a list of states, in which it
can be on. To promote reusability, every state would be provided with a condition (that
we will call it guard), which have to be checked in order to know whether the NPC can
transit to it, and, as well, it would be provided with some algorithm with the purpose
of choosing a state when several states that are runnable. So in this way, the transition
checking has been removed from the state itself, obtaining states more reusable so that,
the same state can be used in different contexts with different guards. As a result of
this, in this approach, the different states are called behaviours because they do not need
explicit transitions. Consequently, to add a new attacking behaviour to a NPC, designers
just need to add this state into the NPC’s list of states along with a guard that becomes
true when that behaviour can be chosen.

The second step to overcome finite state machines limitations is related with the
abstraction and hierarchy. This can be solved by turning finite state machines into
hierarchical finite state machines (Muñóz Ávila, 2006) or, even better, turning behaviour
lists into behaviour trees. The idea of having abstract states that abstract a whole finite
state machine, was first proposed by David Harel as part of his statecharts specification,
a visual formalism. He proposes to extend the state diagrams (the visual formalism for
finite state machines), in order to specify complex systems Harel (1987). Hierarchical
finite state machines use a stack to store active states, where only the state on the top
represents an executable behaviour, and in every cycle it evaluates possible transitions
from the active states Richards et al. (2001).

Having in mind the previous paragraph, behaviour lists concept can be extended
to final behaviour trees by considering that any behaviour in the list can be itself a
composite behaviour with a list of sub-behaviours. The active states of the behaviour
trees must be in a branch going from the root to a leaf of the tree (multiple branches if
several basic actions can be executed at the same time).

The concept of hierarchy in behaviour trees is crucial to overcome the scalability
problem in finite state machines. This is because it introduces a hierarchy of goals that
allows determining behaviour based on reasoning at different levels of abstraction. Most
actions have a primary goal along with a number of additional goals that depend on the
action context Atkin et al. (2001).

For instance, the primary goal of the Move-To action was to change location from x
to y, but in an urban fight scenario the NPC can be moving to get under cover from
enemy fire or to assist a fallen comrade. If the behaviour tree was focused only on the
primary goal of the actions that are being executed, these actions would sometimes lead
to unintelligent behaviour. As an example of this let us suppose that during a movement
the NPC was attacked. If the behaviour tree was focused only on the primary goal of
the actions, the NPC would continue to move, even when it would be totally destroyed
by doing it.

In order to solve this problem, numerous conditional statements could be added to
every action specifying all the exceptions to normal behaviour as in finite state machines.

4.2. Composite Nodes of Behaviour Trees 25

This process would be tedious and could lead to a big amount of errors due to every time
that designers wanted to add a new behaviour, they would need to modify many other
behaviours. So, instead of adding numerous conditional statements, behaviour trees can
handle multiple goals and make them part of a hierarchy, which prioritizes goals higher up
in the hierarchy. Returning to the previous example, to stay alive would more important
than to move from one point to another. Thus, when the NPC was attacked, some
defence behaviours would be ready to its execution and due to they would be higher
priority, the actual branch would be pruned and one of these defence behaviours would
be executed.

4.2 Composite Nodes of Behaviour Trees

Although more complex types of selection mechanisms are described in the literature
of the behaviour trees, in this thesis we only require four kinds of composite nodes:
sequences, parallels, static priority lists and dynamic priority lists.

A sequence consists on some behaviours stored in a list. These behaviours must be
defined in a specific order because the purpose of a sequence is to execute the behaviours
of the list in the order that they were defined. In similarity with sequences, a parallel
node is another list of behaviours with the difference that when it is executed, every child
(every behaviour of the list) has to be executed in parallel at the same time.

Meanwhile, static and dynamic priority lists are a composite node that would evaluate
its children guards in order and would activate the first child which its guard was true.
Each priority list node represents different choices to achieve the same goal, and into
these choices, the best choice is that which is the most priority. The difference between
them is that a static priority list only evaluates the guards the first time, when the node
is invoked to run, while a dynamic priority list re-evaluates the guards of its children
periodically and if during the execution of a child another more priority child, which was
not runnable when the other child was launched, turn into a runnable node, the actual
branch of the tree would be aborted and the more priority child would be launched.

The behaviour selection mechanism has to be completed with an execution model that
determines when to re-evaluate guards for candidate behaviours. Typically, guards are
re-evaluated periodically after a given number of game ticks, when certain game events
occur or when the active behaviour finish its execution. Notice that guards associated to
behaviours are not like preconditions that, when they are fulfilled, guarantee its successful
completion. These guards indicates, as in abstract state machines Borovikov and Kadukin
(2008), that the behaviour can be chosen, although it may terminate with failure or
success.

The abstraction given by behaviour trees allow designers to treat a tree as a new
complex behaviour that can be later reused in other behaviour trees that cover more cases.
In that sense, during the design time, designers would firstly create basic behaviours trees
that represent simple behaviours, and then these basic behaviours would be attached to
different branches of more general behaviours trees developed for one or more NPCs. In
order to have behaviours more reusable, they may be parametrized either hard-coded

26 Chapter 4. Behaviour Trees

during design time, or during the execution of the behaviour tree, by means of other
sophisticated behaviours that are executed before. So, in a particular context, parameters
may be bound to actual values in the virtual environment.

For example, if we had a Take behaviour, the object which was to be taken should
be described as a parameter in order to promote reusability. Then, when the behaviour
was put in a behaviour tree, the parameter (the object which was to be taken) should
be specified either by hard-coding it or by another behaviour that would be executed
before with the purpose of filling the parameter. In this way, this behaviour could be
used to take whatever we want, and we would not need to develop new behaviours to
take different objects.

Notice that behaviour trees represent the behaviour of NPCs, so each behaviour tree
in execution is associated to a NPC. Thus, when a behaviour tree is executed by a NPC,
an execution context must be created for it. The context of a behaviour tree is made up
of a set of variables, in form of (attribute, value). This context is made up of attributes
of the Game State that can be accessed by the NPC. Different guards and actions of
the behaviour tree can sometimes consult or change these variables so every attribute
references in the tree must form part of the context.

Generally, a behaviour tree’s context contains at least two variables:

• ?this: references the NPC executing the behaviour. The attributes of this variable
describe its properties (e.g. strength, force, defensiveness, health).

• ?world: references the virtual environment in which the game takes place.

In order to allow a behaviour to transmit some parameters to another child behaviour,
behaviours can be provided with some input parameters. When a behaviour is invoked,
its parameters would be bound to a value, either a literal value hard=coded by designers,
or a value that come from the context of the behaviour tree that is still in execution. All
of these values will form part of the context of the newly invoked behaviour tree. In the
same way, exchange of information can be done in the opposite direction (from children
to parents) through the context variables.

In Figure 4.1, for instance, the Look for a thing behaviour has two input param-
eters, ?this and ?what, that are bound to the variable ?this of the Wood harvesting
behaviour tree context and to the hard-coded value “log”. When this behaviour was in-
voked, it would find the nearest object of the specified kind (in this case a log) and it
would store it in the ?this.target variable of the context. Then, the Move-To behaviour
is bound with the entity and the selected log in order to move the entity to the log. As
well, the Take behaviour is bound with these two variables to makes the entity take the
log. Finally, the Move and leave sequence is bound with some variables in the same
way in order to execute two sub-behaviours that makes the entity go to home and leave
the log there.

4.3. Behaviour Tree Executer 27

Figure 4.1: Behaviour Tree of “wood harvesting” type.

4.3 Behaviour Tree Executer

Having components (Chapter 3) for creating entities of the virtual environment, when
the implementation of the AI of an entity using a behaviour tree has to be tacked, the
obvious approach would be to create a new component that would be able to execute a
given behaviour tree over that entity. In Figure 4.2 this component is called BTExecuter.

This new component can be seen as an interpreter of behaviour trees. It is meant to
read the properties of the entity during initialization time and load the behaviour tree
file specified on them. It is able also to handle different messages for changing the current
behaviour tree in execution; this is useful when designers want to hard-coded a change
on the behaviour for the sake of the gameplay.

The composite nodes that compound the behaviour tree are executed accordingly by
the component. It tracks the branch of the behaviour tree being executed and checks
the condition of the open nodes periodically. When the flow of execution reaches a leaf
where a basic action resides, it has to perform it over the entity it belongs to.

These basic actions (such as a Move-To action) can be carried out in two different
ways. The first approach consists on running it autonomously, sending messages in every
tick over the other components of the entity. For example, in a Move-To action the
BTExecuter component may send update messages of positions in every tick.

In the second approach the BTExecuter component does not take the responsibility

28 Chapter 4. Behaviour Trees

<BluePrints>
. . .

<en t i t y type = "HumanEnemy">
<component type = "AnimatedGraphic"/>
<component type = "Physic"/>
<component type = "BTExecuter"/>
<component type = "Move−To"/>
<component type = "DummyBehaviours"/>
<component type = "Carry"/>
<component type = " S k i l l s "/>
<component type = "Use−Vehic l e"/>

</ent i ty>
. . .

</BluePrints>

Figure 4.2: CHumanEnemy entity built by components.

of executing any of the basic actions but delegates its execution to other components
that the entity must own. In that sense, the atomic actions that appear in the leaves
of the tree will be carried out by other components (such as Move-To component or
FollowPath component). Our BTExecuter becomes a director of the execution that sends
messages with the action information and waits the confirmation messages indicating that
executions of these actions has ended, in order of having the behaviour tree execution
moves forward.

Our proposal for future chapters is based on this second way. As we have see Section 3
every component represents an ability/skill that the entity has. So, if actions are carried
out by different components, abilities and skills of the entity are explicit because we
can link behaviour tree actions with components that can carry out those actions. In
following chapters it will give us the possibility to applied inference mechanisms that will
help us to create systems that detect and fix failures of behaviour trees associated to
specific entities.

Let us propose an example in which the BTExecuter component has to move the entity
from one point to another(Figure 4.2). This component would send a Move-To message,
with some parameter like the target position, to the entity. The entity would transmit the
message through their components and the Move-To component would accept and store it.
Then the Move-To component during its processing time would find the correct path for
the movement and it would send ChangePosition messages periodically, with parameters
such as the new position or the movement type, through the entity and components
such as Physic component or Graphic component would accept and store it for future
process in which they would change positions of the physic and the graphic entities and
would play the corresponding animation. Finally, when path was completed, the Move-To
component would send a confirmation message that the BTExecuter component would
receive to continue the behaviour tree execution.

Chapter 5

Reflective Components

In this chapter the basic tenets, in which our Reflective Components proposal is supported, will be
exposed. Here it is only explained the base that every reflective components system should have.
Then, in chapters 6 and 7 two different approaches, which are built on the top of these tenets, will
be explained.

5.1 Gathering Information

As we explained before, developing the AI for non-player characters in a video game is
a collaborative task between programmers and designers. Most of the time, there is a
tension between the freedom that the designers require to include their narrative in the
game, and the effort required by programmers to debug faulty AI specified by good story
tellers who are not programmers.

Nowadays, the industry is making a big effort to separate the collaboration between
both groups as much as possible, so programmers need to provide designers with tools
which will allow them to design history plots, character behaviours, etc. Consequently,
some of the information, about the logic of the game, which forms part of C++ classes,
have to be duplicated in the design field to develop these design tools.

This duplicated and separated knowledge can lead to errors due to the fact that
someone implementing a new functionality in C++ classes may forget to replicate this
knowledge in the design field of every tool. Even usually programmers who implement
game functionalities and programmers who implement design tools are different peo-
ple. Thus, if there were not a perfect coordination between both parties, some of the
implemented game functionalities would be never used by the designers because these
functionalities could not be replicated in the design tools and the designers would ignore
their existence.

As an example, we can think of a tool to build Behaviour Trees for component entities.
In that tool, some extra information about entity abilities or skills would be needed to
know which types of actions could be carried out by each entity. So, every time we
wish to add a new component/ability to an entity in the implementation field, or every

29

30 Chapter 5. Reflective Components

time we want to add a new entity in the implementation field, we have to redefine the
knowledge of these entities for the design field too, to enable designers to use them in the
correct way. Therefore, as we explained before, if there was not this perfect coordination
between game developers and tool developers, some of the implemented game entities, or
entity abilities of those entities (and consequently actions that they are able to carry out),
would be never used by the designers because these qualities could not be implemented
in this design tool.

For avoiding this tedious, difficult and probably uncoordinated process, in which the
information has to be defined in different places, we propose to gather all the information
through the reflexive components, which are responsible for describing themselves. In
this way, all the information about the game entities is stored in the same place: the
components. Thus, the one who implemented a new component would be the person
responsible for filling some extra methods that would allow one to describe this new
ability in the design field.

5.2 A Reflective Component-Based System Develop Method-
ology

In previous chapters we have defined how entities are built from simple XML files in
which they are described as a collection of components. Therefore, our fine-grained ap-
proach should consider different limitations due to different parameters that are related
to entities and their components. We said that our proposal was to bring all the knowl-
edge together into components, consequently the C++ implemented game entities, with
their components, had been specifically described for some tools. So during the execution
of these tools, the implemented game entities have to be used. Because of this, these
entities have to be initialized during the design time in order to be used by these tools.
This is because components are responsible for knowing their abilities, their skills or
which actions they are able to do.

Nevertheless these initializations do not have to be full initializations because there
would be many unnecessary functionalities programmed for the final game, therefore
partial initializations have to be allowed to use the components by the design tools. For
example, during the game execution, a Graphic component will create a graphic entity
into the graphic engine from the model specified to the component. Then the engine will
render the model to present it on the screen. However it is not necessary during design
time and the component might only need the animation names in order to know which
types of animations are able to be played and consequently which types of actions could
be represented by the model.

The reflective component-based system, which we are proposing, could be used in
many ways to support different design tools, and these descriptions would be very close
together. Although later we will explain two approaches for two different tools, now we
want to abstract all those possible descriptions to propose a reflective component-based
system developed methodology. Owing to the fact that we explained in a previous section

5.2. A Reflective Component-Based System Develop Methodology 31

how to build a component-based system, in continuation, differences between a usual
component-based system and a reflective component-based system will be stressed to see
how our system extends the component-based system.

The First difference between a usual component-based system develop and a reflective
component-based system develop is their initialization. In our proposal, there is a dif-
ference between design and execution initializations as we explained before, thus when
a reflective component is developed partial or full initializations have to be allowed. It
could be done by adding a new method, such as spawnInDesign(), to the IComponent
interface but, depending on the functionality that components share between the design
time and the game execution, it could be done in the same spawn() method avoiding
duplicated code between both methods.

Some tools may need to extract component information once to collect all the knowl-
edge and to process it. So, components are only needed during the initialization of the
tool. However, other tools may need entities and their components during their whole
life due to the fact that they would need to check the entities’ abilities during the tool’s
working time. Consequently, one or more methods have to be added to the IComponent
interface, to allow the reflective components to describe its abilities, skills or which actions
they are able to do, in the way that the tool needs.

Tools may want to directly ask components, but usually they want to ask entities
about their abilities, skills or which actions they are able to do, because these tools
usually ignore that an entity is a collection of components. So we have to provide
entities with one or more methods that iterate over the list of components collecting the
information provided by them. In Code Block 2 a general view of methods that have to
be implemented for developing a reflective component-based system can be seen. Then
each concrete component, which would have to inherit from IComponent interface, has
to be implemented with their specific spawn and getinformation() methods. Let us
recall that different getinformation() methods can be added to give the information in
different ways, both for the same tool and for more than one tool.

class IComponent {
...
virtual void spawn(bool full);
virtual Info getInformation(Data consult)=0;
...

};

class Entity {
List[IComponent] _components;
...
Info getInformation(Data consult) {

Info info;
for each IComponent c in _components {

info = merge(info, c.getInformation(consult));

32 Chapter 5. Reflective Components

}
return info;

}
...

};

Code Block 2: Pseudo-code of the implementation

In following chapters two different proposals of reflective component-based systems
will be shown for two different processes. Firstly, a reflective component-based system,
which helps us to validate Behaviour Trees over different entities, will be seen. The
system validate Behaviour Trees by checking which actions of the tree can be carried out
by the specified entity. Secondly, another reflective component-based system, which helps
designers in the process of building Behaviour Trees for concrete scenarios, will be seen.
In this system the designers would propose the initial state of the world and the desired
goal, and the tool would provide all the possibilities to achieve that goal.

Chapter 6

Self-Validated Behaviour Trees
through Reflective Components

In this chapter we are proposing a concrete reflective component based system (Llansó et al., 2009),
which is used to validate Behaviour Trees over a concrete entity prior to the execution of the tree.
In the process of validating Behaviour Trees, the different branches of the tree are covered. Their
leaves (final nodes which contains an action) are checked with the entity, looking for possible failures
caused by intrinsic limitations of the entity. Then, depending on the tool that has been proposed,
failures would be reported, fixed or ignored.

The rest of the chapter runs as follows. The next section (Section 6.1) will present the typical
kinds of failures that can be found in Behaviour Trees and how we propose to extend these kinds
of failures. After that, we will propose a possible implementation for the Reflective Components of
this proposal (Section 6.2). Firstly we will explain a coarse-grained approach an then will be explain
the fine-grained approach with a detailed pseudo-code implementation. Next, we will explain the
implementation part corresponding to the extended behaviour trees that we introduce (Section 6.3).
To complete the proposal, the section 6.4 will expose a detailed example of how the system would
work and how some specific component could be implemented in order to work properly. Finally, the
different uses that the system would have will be tackled in Section 6.5. This section is split in two
parts. The first one will present the uses during the design time whilst the second one will present
the uses during the execution of the game.

6.1 Failures in Behaviour Trees caused by Intrinsic Nature
of the Entity

As we have shown earlier, a behaviour tree describes the actions that an avatar should
execute within the environment using a tree hierarchy. Behaviour trees are then assigned
to concrete entities either in design time or once the game is being executed.

During the game’s execution, some failures can arise due to these assignments and
due to the state of the world. These failures can be due to several reasons and they all
are failures related to the basic actions. Most of the implementations of behaviour trees

33

34 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

distinguish between two different kinds of failures of the basic actions:

• Failures prior to the execution: these errors appear before the beginning of the
execution of the action. The action ends without having made any changes to the
world so usually, the solution involves local replanning. A typical example of this
is the failure of a Move-To action because there is no path to the target position.
In this case, the replanning usually consist of finding a new path in order to arrive
at the same target position.

• Failures during execution: before the execution, the action checks the environment
and it establishes that the action is able to completely perform the task. However,
if something changed in the virtual environment the task would not be able to be
completed (i.e. these errors are due to the ever changing nature of the world).
When these failures happen the action has already made changes to the virtual
environment. When these failures take place, the response usually looks for another
alternative in a different branch of the tree that tries to achieve the same goal. One
example is the failure of a Move-To action because the path is suddenly blocked,
and there is no other way to reach the target.

These failures are due to the state of the environment and they are not due to the
abilities of the entity, which is associated with the behaviour tree. However we can extend
the kinds of errors we can find in a behaviour tree. Generally speaking, a behaviour tree
fails when its actions cannot be executed (we assume that the failure of composite or
internal nodes depend on the success or failure of their children that, in the end, are
basic actions). Therefore, it makes sense to carefully analyse new conditions that may
cause an action to fail:

• The NPC assigned to the behaviour tree does not have the ability to execute the
action. An example of this is an action that follows a path within the environment
but requires the NPC to fly. If the NPC does not have that ability, the action will
fail. This is an intrinsic limitation of the entity, not a failure of the action itself as
a result of the environment (such as in previous examples).

• The NPC has the ability to execute the action but it cannot do the action under
the concrete conditions created by the designer. This is related to the parameters
of the actions rather than it’s nature. For example, an entity may be able to carry
objects but it might not be able to carry a specific object because it was too heavy.
Once again, the failure is due to an inherent limitation of the NPC.

These failures are due to assignations of behaviour trees to entities. So, to summarize,
we can say that there are two kinds of errors: those due to the intrinsic nature of the
entity that will try to execute the actions (the extended kinds of failures), and those that
are related to the state of the environment (the previous ones).

The system, proposed in this chapter, focuses on the extended kind of errors due to
the intrinsic nature of the entity that tries to execute the Behaviour tree: Those errors

6.2. Implementation of Extended Reflective Components and Entity 35

related to the abstract abilities of the entity (can it fly or carry objects?) and those
limitations of the entity while performing the ability itself (maximum flight distance or
maximum weight, of an object, that can be carried).

6.2 Implementation of Extended Reflective Components and
Entity

As it has been said in section 5.2, the implementation of the process of validating be-
haviour trees is based on the components. If the entity is specified in terms of its com-
ponents, and that a component can be seen as an ability that the entity has, it makes
sense therefore to try to identify the failures related to the inherent nature of the entities
using such a description. In order to do that, we will see, as a starting point, the explicit
knowledge that is available both in the list of components and in the Behaviour Trees,
which contains the list of actions needed to execute the behaviour.

6.2.1 Coarse-Grained Approach

According to the classification of failures as listed in section 6.1, the implementation has
to cope with two different limitations: those inherent to the actions and those related to
the parameters given to the actions.

For the first ones, and taking into account that every action is performed by a com-
ponent, the easy (and naive) approach is to make direct associations between actions
in final nodes of behaviour trees and components which are capable of executing these
actions.

As an example, let us suppose a behaviour tree that defined a character behaviour
that consisted of patrolling from one point to another and, when another character was
perceived, it shot it with a gun. The final behaviour tree would have (together with
composite nodes and the condition node related to the perception of another entity) a
Move-To and an Attack action. The test would be to check if the entity assigned to the
behaviour tree had a Move-To component for the patrol and an Attack component for
shooting at the enemy.

To implement this idea it is enough to have a table of pairs, in which each pair is
made up of a behaviour tree action and a list of components that carries out the above-
mentioned action. So, to validate a behaviour tree assignation would suffice to check that,
for each action, the entity has at least one component of the component list associated
with each action in the table.

Unfortunately, though the idea is easy to implement, it is not precise enough, because
it gives the designer false positives. In more specific cases, the entity would not be able
to perform the behaviour whilst our implementation would assure that it would.

36 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

Figure 6.1: Table scheme with actions and lists of components that are able to carry out
these actions.

6.2.2 A Fine-Grained Approach

There are two different reasons why the entity would not be able to perform a behaviour
whilst our previous implementation would assure that it would. Some components could
be associated with behaviour tree actions, but they could not always be able to carry
out all these kinds of actions by themselves, either because they need the collaboration
of other components, which may not be in the entity, or because the component cannot
correctly execute the action with the parameters associated with this action.

For example, let us suppose a behaviour tree that had an action that must make an
entity fly from one point to another. The entity may have a Move-To component, but
the AnimatedGraphic component of the same entity would not be able to play the flight
animation. When the Move-To component broadcasts the ChangeAnimation message
with the “flight” parameter, no component would be able to perform the action, and
therefore the behaviour tree would not be suitable for the entity which it wants to be
associated with.

On the other hand, there can be a component that, let us say, allows the entity to
take other objects. When the component is created, it takes some information from the
map and archetype files (Section 3.2.2), such us the maximum weight that the entity
can carry. If the AI of the entity decides to take an object, it will send a Take message
with a parameter specifying the object to be taken. If the behaviour tree sent a message
with an object whose weight exceeded the maximum load that the entity may carry, the
message would not be successfully handled by any component.

In order to manage both kinds of errors and with the purpose of giving a fine-grained
approach, we extend the IComponent interface, so that the components are able to be
asked about their abilities for performing actions in the behaviour tree. Those question
are made by asking the components if they are able to handle a concrete message ac-
cording to their configuration. So, we shall query them using the same messages that
behaviour tree actions will generate during the game execution to give instructions to

6.2. Implementation of Extended Reflective Components and Entity 37

the entity. These messages include specific parameters of behaviour tree actions. Con-
sidering the previous examples, this new method would be used to check if there were
some components capable of processing a Go-To message that requires the entity to fly,
or a Take message with a concrete object. both particularities (requires the entity to fly
or to take a concrete object) should come as parameters of the message.

As a starting point, it can be supposed that the proposed implementation consists of
when a behaviour tree is assigned to an entity during the design time, the final behaviour
tree actions would be gone through, one by one, asking the entity. An action would ask
the entity through the canEntityCarryOut()method, if it (the action) could be executed
with its parameters. The method would ask the components sequentially, through the
canComponentCarryOut() method, about their abilities in executing this action, until a
component returns true or the list has ended.

The specific components would be those responsible for implementing the canCompo-
nentCarryOut() method, declared in the interface of the component, reporting which
actions could be performed. Depending on the component, it would automatically return
true/false or it would check if their attributes allowed the action to be executed (for
example comparing the maximum weight that the component can take with the weight
of the object that is supposed to be taken).

More complex actions would require the component to recursively consult other com-
ponents about their abilities to execute primitive actions such as pick a concrete anima-
tion. So in the previous example, the Move-To component would ask the entity com-
ponents about if they had the ability to play the flight animation and it would return
true/false depending of the answer of the other components.

It is obvious that components have to be initialized to receive messages and to check
their abilities but, as has been explained in section 5.2, full initializations are not nec-
essary. So every specific component would be responsible for implementing the spawn()
method, declared in the IComponent interface. For example, during the game execution,
a Physic component will create a physic entity, into the physic engine, that allows the
entity to collide, to be moved by forces, etc. However it is not necessary during design
time and the component might only need to know if the physic entity is static, dynamic
or kinematic (to know which kinds of movements it is able to do) and to know if it is
solid or if it is not (to know if other entities can collide with it or if they cannot).

Code Block 3 shows the pseudo-code of the implementation at this point.

class IComponent {
...
virtual void spawn(bool full);
virtual bool canComponentCarryOut(Message m) {

return false;
}
...

};

38 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

class Entity {
List[IComponent] _components;
...
bool canEntityCarryOut(Message m) {

for each IComponent c in _components {
if (c.canComponentCarryOut(m))

return true;
}
return false;

}
...

};

bool check(Entity e, BT bt) {
for each Action a in bt.actions {

Message m = a.getMsg();
if (!e.canEntityCarryOut(m))

return false;
}
return true;

}

Code Block 3: Pseudo-code of the implementation

6.3 Implementation of Extended Behaviour Trees

As has been said before, a starting point, in order to validate associations between
behaviour trees and entities, could be to iterate over the list of actions of the behaviour
tree, and if all the actions were able to be carried out by the entity the association would
be validated. The problem with this is that this process is quite coarse-grain and its
precision is not good enough. In this way, the system would only validate or invalidate
associations, but if the system invalidated an association, it would not locate where and
why this association was invalidated.

Therefore, a fine-grained approach should locate which branches of the behaviour tree
were not able to be carried out by the entity and which the node and the reason that
made it crash. Bearing in mind that a behaviour tree may have different internal nodes
(Chapter 4), all these kinds of nodes have to be evaluated by different methods.

As its name denotes, a sequential node represents a chain of behaviours. Thus to
validate a sequential node all its children nodes must have been validated before. There-
fore, if there was one node of the sequence that was not validated, the sequential node
would be invalidated knowing why and where the problem would be.

6.3. Implementation of Extended Behaviour Trees 39

A parallel node could be analysed in the same way as the sequential nodes were
analysed. As in sequential nodes, to validate a parallel node all its children nodes must
have been validated before. The only difference between both nodes is that in a sequential
node, its children have to be executed one by one whilst in a parallel node all its children
have to be executed at the same time.

Both kinds of selector nodes (static and dynamic priority list) represent a behaviour
that chooses between different ways of resolving a problem. So only one of the child
nodes would be executed during the game rather than in previous examples, in which
all the children would be executed. As a result of this, a fault detected in a child of the
selector nodes was less critical than faults detected in a child of sequential and parallel
nodes. This is because there were probably another choice (another child) selectable by
the selector node. Therefore we could call these faults as warnings, instead of failures, if
the child node that fails has at least one other brother node that has been validated.

So, to summarize, the method would be applied to the root node of the behaviour
tree, then the method would be applied to its children and recursively to all the nodes
of the tree. Finally, the leaves of the tree, which contains the final actions, would be
checked and validated/invalidated.

As a result of this, failures and warnings would be located and associated with one
branch of the behaviour tree. Therefore, how these failures and warnings would be fixed
or reported, would depend on how the tool works. Nevertheless, the easier way for solving
a warning is to remove the whole branch whilst failures must be treated with more care.

In this fine-grained approach, the implementation code has to be extended as in
Code Block 4. IComponent and Entity classes would continue being the same as in
Code Block 3. Nevertheless the classes of the nodes of the behaviour trees should be
extended. This is because the check must be done recursively from the root of the tree
to its leaves.

So, the INode interface would have a new virtual method, check(), which should be
implemented by any class that inherits from the INode interface. This method would
return two lists with failures and warnings. Each failure, or warning, would be in turn
another list that would have the list of nodes involved in the failure, or warning. The
first node would be the beginning of the failed branch and the last one is the leaf (final
action) that made it crash.

In the Action (node) class, the check() method would ask the entity using the
canEntityCarryOut() method, if the action could be executed with its parameters.
This question would be done by sending the same message that was generated during
the game execution and, as has been explained in section 6.2.1, the entity would broadcast
the message to all of its components. If the entity returned false it would mean that the
action cannot be carried out by this entity. Therefore this would be a failure and, as
such, it shall be inserted into the failure list.

In the Sequential and the Parallel classes (or maybe in a common interface), the
check()method would ask recursively the check()methods of the children nodes located
in a list that these classes should have. The warning lists of every child would be merged
to create the warning list of the Sequential or the Parallel node. In the same way, the

40 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

failure list would be created from the failure lists of the children but with the difference
that it (the Sequential or the Parallel node) should be included into all the failures
reported by the children. The node should include itself because, as has been explained
before, if one node of the sequence (or of the parallelization) failed, the Sequential or
the Parallel node would fail too.

The check() method of the Selector class would also ask recursively the check()
method of its children but, in this case, we have to remember that a failure produced in a
child node would be only a warning in a Selector node. So, the new warning list would
be the merging of all the failures reported by the children and also the warnings reported
by them. A Selector node would only trigger a failure if all their children failed. Thus
in this case, the Selector node would include itself into the failure list that it reported.

Lastly, the global method that checked the association between behaviour trees and
concrete entities would only call the check() method of the root of the tree and, as has
been seen previously, all the nodes would be asked recursively.

typedef List[List[node]] TListErrors;

class INode {
...
virtual {TListError,TListError} check(Entity e);
...

};

class Action : INode {
...
{TListError,TListError} check(Entity e) {

TListError failures;
TListError warnings;
Message m = this.getMsg();
if (!e.canEntityCarryOut(m))

failures.add([this]);
return {failures,warnings};

}
...

};

class ISequential&Parallel : INode {
List[INode] _children;
...
{TListError,TListError} check(Entity e) {

TListError failures;
TListError warnings;
for each INode n in _children {

6.3. Implementation of Extended Behaviour Trees 41

TListError f_children;
TListError w_children;
{f_children,w_children} = n.check(e);
//if a child fails, sequential node fails
//it should be included into the failures
for each List l in f_children {

l.add(this);
}
failures.merge(f_children);
warnings.merge(w_children);

}
return {failures,warnings};

}
...

};

class Selector : INode {
List[INode] _children;
...
{TListError,TListError} check(Entity e) {

TListError failures;
TListError warnings;
bool validated = false;
for each INode n in _children {

TListError f_children;
TListError w_children;
{f_children,w_children} = n.check(e);
if(f_children.empty())

validated = true;
else {

//if a child failed in a selector it would
//be a warning instead of a failure
warnings.merge(f_children);

}
warnings.merge(w_children);

}
//if no child is validated this node should
//be into the failures
if(!validated) {

failures.add([this]);
}
return {failures,warnings};

}

42 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

...
};

{TListError,TListError} check(Entity e, BT bt) {
return bt.root().check(e);

}

Code Block 4: Pseudo-code of the implementation

6.4 Example

Let’s suppose that we were creating a game where avatars would need coal for their
subsistence. Designers would create behaviour trees such as the one shown in Figure 6.3
that represents a behaviour of “coal harvesting”. It is compound by a composite node that
executes in sequential order the action of Look for a thing, to look for a coal mine, and
the selector node Go and leave resources. This selector node has two choices, which
are represented by two different sequences of actions. In the first sequence, the avatar
would find and would get in an excavator shovel, it would use it in order to go to the coal
mine, it would load coal, it would drive to camp and it would unload the coal there. On
the other hand, in the less priority sequence, the entity would move to the coal mine, it
would find a piece of coal, then it would take it, it would return to the camp and finally
it would leave the piece of coal there.

Once the tree was described, if it was associated with the entity described in Fig-
ure 6.2, the proposed system would validate or invalidate this association. To do it, the
system would work, as has been described in Figure4, by invoking the check() method of
the root node of the behaviour tree. Then, the root (Coal harvesting node) would call
the check() methods of its children because it is a Sequential node. The Sequential
node would receive the failures and warnings of its children and then it would propagate
all of them adding itself, previously, to all the failures.

Nevertheless, to receive these failures and warnings, the check() methods of its chil-
dren must be processed. The first node of the sequence (the Look for a thing node) is a
final action and consequently, its check() method would call the canEntityCarryOut()
method of the entity, with the message that would be produced during the execution
of the tree as a parameter. If this method returned false, the Look for a thing node
would be added as a new failure to the failure list but in this case, the action would be
handled by the Look-For component so the canEntityCarryOut() method would return
true.

The second and last node of the sequence of the root (the Go and leave resources
node) is a Selector node with two different choices that are two Sequential nodes.
Therefore, the Go and leave resources node would ask its children using their check()
methods.

6.4. Example 43

<BluePrints>
. . .

<en t i t y type = "Labourer">
<comp type = "AnimatedGraphic"/>
<comp type = "Physic"/>
<comp type = "BTExecuter"/>
<comp type = "Move−To"/>
<comp type = "DummyBehaviours"/>
<comp type = "Look−For"/>
<comp type = "Take"/>
<comp type = " S k i l l s "/>
<comp type = "Use−Vehic l e"/>

</ent i ty>
. . .

</BluePrints>

a) Blueprints file

<archetypes>
. . .

<en t i t y type = "Labourer">
<a t t r i b

name = " s t a t i c "
value = " f a l s e "/>

<a t t r i b
name = " s o l i d "
value = " true"/>

<a t t r i b
name = "kinemat ic "
value = " true"/>

<a t t r i b
name = "model"
value = " laboure r . n2"/>

<a t t r i b
name = " s t r ength "
value = " st rong"/>

. . .
</ent i ty>
. . .

</archetypes>

b) Archetypes file

Figure 6.2: Labourer entity built by components.

When these different choices were asked, as they are sequences, they would ask, in
turn, the check() methods of their children. All the children of both sequences are final
Actions, so when they were checked all of them would call the canEntityCarryOut()
method of the entity, with the messages that they would produce during the execution.

At this point, only the different final actions were unprocessed. Move-To actions would
be handled by the Move-To component. When this component was consulted through the
canComponentCarryOut() method, it would, in turn, ask through the canEntityCarry-
Out()method consulting if the entity were able to play a walk animation. The Animated-
Graphic component would be able to carry out the animation because the associated
model (labourer.n2) has it.

The Look for a thing actions would be carried out by the Look-For component
as has been mentioned before. The Take action and the Leave action would be carried
out by the Take component. As the specific piece of coal that the entity would take is
not hard-coded, it would not be known during the validation. Because of this the Take
component would not have to check extra conditions such as the entity having enough
strength to take the weight of the specific piece of coal.

The Get in vehicle action, the Get out vehicle action and the Drive-To ac-

44 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

Figure 6.3: Behaviour Tree 1 of “coal harvesting” type.

tion would be carried out by the Use-Vehicle component. When this component were
consulted, by these different actions, through the canComponentCarryOut() method, it
would, in turn, ask through the canEntityCarryOut() method consulting if the entity
would be able to play those corresponding animations.

It could be thought that Load action and Unload action would be carried out by the
Use-Vehicle component too, but let us imagine that this component was implemented
to cover the basic actions that could be done with a vehicle. So, to execute these actions,
the entity should have another specific component to use an excavator shovel. Due to this
component not being specified in the blueprints file for the Labourer entity, these actions
would fail and both actions would report a failure to their father, the Look for vehicle
and harvesting Sequence node. This node would add itself to the failures and it would
propagate these failures to the Go and leave resources node. This node would receive
these failures and, because of it would be a Selector node, these failures would be turned
into warnings. Finally, these warnings would be reported to the root node and, in turn,
the system would finish by receiving these two warnings and no failures.

in Code Block 5 can be seen how canComponentCarryOut() methods of some com-
ponents could be implemented. As an example, let us expose how a Take action, with

6.4. Example 45

a hard-coded object to take, was checked. The action would ask the entity using the
canEntityCarryOut() method and passing the message with the object which was to
be taken. The entity would ask its components by passing the same message. The Take
component, during its canComponentCarryOut() method, would create and would ask
the entity with two different messages in order to know if the entity was able to play
the take animation and if it was able to produce enough force to take the weight of the
concrete object. If both queries returned true or if there was not a concrete object to
take and the entity had the animation, the method would return true too. In any other
case, the entity would return false.

The canComponentCarryOut() method of the AnimatedGraphic component would
return true if its model had the animation or if the name of the animation was not
specified. Meanwhile, The canComponentCarryOut() method of the Skills component
would return true if its force was greater than or equal to the weight of the object (if
there was a concrete object specified).

class Take : IComponent {
...
bool canComponentCarryOut(Message m) {

if(IS_INSTANCE_OF(m,TakeMsg)) {
if(m.getObject() != NULL) {

Message ef= new ExertForceMsg(m.getObject().getWeight());
Message sa= new SetAnimationMsg(‘‘take’’);
return _entity.canEntityCarryOut(ef) &&

_entity.canEntityCarryOut(as);
}
Message sa= new SetAnimationMsg(‘‘take’’);
return _entity.canEntityCarryOut(as);

}
return false;

}
...

};

class AnimatedGraphic : Graphic {
Model _model;
...
bool canComponentCarryOut(Message m) {

if(Graphic::canComponentCarryOut(m))
return true;

if(IS_INSTANCE_OF(m,SetAnimationMsg)) {
if(m.getAnimation != NULL)

return _model.hasAnimation(m.getAnimation());
return true;

46 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

}
return false;

}
...

};

class Skills : IComponent {
int _force;
...
bool canComponentCarryOut(Message m) {

...
if(IS_INSTANCE_OF(m,ExertForceMsg)) {

if(m.getWeight() != NULL) {
return _force >= m.getWeight();

}
return true;

}
return false;

}
...

};

Code Block 5:
Pseudo-code of the canComponentCarryOut() methods of some components

6.5 Different Uses

The reflective component based system that we are proposing can be used in different
ways: During the design time and during the execution of the game.

During the design time, designers would use reflective components to check direct
associations that they had made between entities and behaviour trees in order to verify
these links. It would give designers the chance of fixing many wrong associations without
the need to debug the game.

During the execution of the game, the game itself would use reflective components to
check if the links, made during the design time, could be carried out under the current
circumstances of the environment. Although the associations were checked during the
design time, some special circumstances of the environment may prevent the entity in
carrying out some validated actions of the behaviour tree. This use would give the game
engine the chance of replanning the carrying out of goals when some branches of the
behaviour tree had not been carried out under special circumstances of the environment.

6.5. Different Uses 47

6.5.1 During the Design Time

During the design time, the system would try to identify the failures due to the intrinsic
nature of the entity in order to check if there were some guarantees, about the success of
the execution of the behaviour trees, as soon as possible. With this technique, designers
would have an extra check that would assist them when creating behaviour trees and
NPCs. Due to the check would be done before the execution of the behaviour tree,
designers would be more confident about the correct link between NPCs and Behaviour
trees.

Let us imagine a tool that would use the concrete reflective component based system,
which we have proposed in this chapter, in order to check associations between entities
and behaviour trees during the design time. This tool could check these associations,
and use the failure and warning lists to help the designer in the process of fixing the tree
(or the entity).

The tool would provide a graphic interface that would present the tree. When the
tool processed failures and warnings, the affected branches would be stressed and for
each failed branch, the system would offer some different choices to fix the branch. For
example, the tool might find another way to achieve the same goal that the failed branch
tried to achieve. In the next chapter we will propose another reflective component based
system that would help the tool to find different ways to achieve a goal. Other choice
would be to use case-based reasoning (CBR) in order to retrieve branches, of other
designed behaviour trees, that achieve the same goal. Another way for fixing a failure
could be to offer a list of components that would allow the entity to carry out the action
that the entity was not able to carry out before.

In the same way, the warnings would be stressed and some choices could be offered in
order to fix them but with the difference that fixing them would not be necessary. This
is because if the designer did not correct a warning, the tool would rule out the warned
branch and the resultant tree would be accepted.

Of course, the tool would let designers fix the branch manually by adding a new
branch instead of the failed one and also, the tool would let designers recheck associations
whenever they wanted.

To show how it would work, let us propose an example of a complex behaviour tree
(Figure 6.4) that would fail in its association with the entity shown in Figure 6.5. The
behaviour tree represents different alternatives of wood harvesting. in Figure 6.4 the
warnings (orange branches with dashed borders) and failures (red branches with dotted
borders) can be seen, reported in the association of the entity with the behaviour tree.
These faults would arise according to a lack of a specific component that was able to
carry out the Look for a thing behaviour. Let us remember that the actions that fail into
a Selector node are catalogued as warnings, instead of failures, because there could be
other choices.

At this point, the tool would show the failures and warnings, in a similar way as in
Figure, and it would propose alternatives to fix them. The easier alternative would be
to add a new component to the entity such as a Look-For component, which was able

48 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

Figure 6.4: Behaviour Tree of go sounding behaviour.

to execute the Look for a thing action, and, in this way, the failed branches could be
carried out. The other alternatives would be related to the modification of the behaviour
tree. This would be done through the use of a planner or by retrieving branches of other
behaviour trees previously designed (CBR).

Both methods could offer the alternative shown in Figure 6.6. This behaviour tree
fixes the problem with a collection of nodes that would make the entity wander until it
saw another character. When another character is perceived, the behaviour tree would
move the entity to the character and would make the entity ask about the thing that it
was looking for. The behaviour would finish when the thing, which was looked for, was
found. By hard-coding the thing that was desired, this behaviour could be used to look
for both a log and a vehicle.

Once the tool is offered the different fixes, the designer was the person responsible for
choosing between the different alternatives, or of creating new valid branches in order to
replace the failed ones.

6.5.2 During the Execution of the Game

As during the design time, during the execution of the game the system would try to
identify the failures and warnings due to the intrinsic nature of the entity before the
execution of the behaviour. In this case, the faults could arise because of two different

6.5. Different Uses 49

<BluePrints>
. . .

<en t i t y type = "Human">
<comp type = "AnimatedGraphic"/>
<comp type = "Physic"/>
<comp type = "BTExecuter"/>
<comp type = "Move−To"/>
<comp type = "DummyBehaviours"/>
<comp type = "Take"/>
<comp type = " S k i l l s "/>
<comp type = "Use−Vehic l e"/>
<comp type = "Communicate"/>

</ent i ty>
. . .

</BluePrints>

a) Blueprints file

<archetypes>
. . .

<en t i t y type = "Human">
<a t t r i b

name = " s t a t i c "
value = " f a l s e "/>

<a t t r i b
name = " s o l i d "
value = " true"/>

<a t t r i b
name = "kinemat ic "
value = " true"/>

<a t t r i b
name = "model"
value = "human . n2"/>

<a t t r i b
name = " s t r ength "
value = " st rong"/>

. . .
</ent i ty>
. . .

</archetypes>

b) Archetypes file

Figure 6.5: Partial list of blueprints file

reasons. The obvious one would be because the associations between the entity and the
behaviour tree were not checked during the design time. The other possible reason could
be that, during the design time, there were some unknown things and because of this, a
whole check was not possible.

As an example of the second possibility, let us suppose that a behaviour tree of “wood
harvesting” that made the entity find a new piece of wood, to take it and to bring it home.
Also, let us suppose that the process of finding the piece of wood to be taken was made
by another complex behaviour that had been previously checked. Thus, the logs to be
taken were not hard-coded in the tree. So if the entity had had the abilities of taking and
bringing logs, the validation between it and the behaviour tree would have been made
during the design time. Nevertheless, the weight of the logs that the entity would have to
take was not known during the design time because these logs would be selected by the
other behaviour during the execution of the game. Therefore if during the execution of
the game the behaviour, which decided the log which was to be taken, chose a too heavy
log that the entity would not be able to take, the check between the “wood harvesting”
behaviour tree and the entity would have a failure although it was validated at the design
time.

50 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

Figure 6.6: Behaviour Tree of go sounding behaviour.

Now failures and warnings can arise during the execution of the game, consequently
the game would have to be ready to fix them. A warning would be easily fixed by
removing the whole warned branch. This would be the best choice because warnings
only arise into Selector nodes, so other choices would be expected by the choice that
the Selector node would have to make. Remembering that if there were not any other
choices, a failure would arise and this failure would be fixed.

On the other hand, a failure would be more difficult to fix because the intention of
the designer would be not known at that point. The designers are those responsible for
design of both entities and behaviour trees. Consequently, during the execution of the
game, the game engine must be as faithful as it can to design entities and trees.

Nevertheless when the game was notified about a failure, it would not know if the
failure would have been due to either the entity, which could have a component missing,
or the tree, which could have invalid actions. For example, if during the execution of
the game a failure was reported, because of there were an entity that was not able to fly
associated with a behaviour tree that had an action that made the entity fly from one
point to another, which would be the one responsible of this failure?. Could be supposed
that behaviour trees would be always accomplished, as they were built, because if they
would not, the story plot would be broken. So in this case, the failure would be fixed
by allowing the entity to do actions far from its possibilities. Although also could be
supposed that the entities were always well built and if a behaviour tree reported a failure,
the game should try to fix it by accomplishing the same goals, which the behaviour tree
tried to accomplish, in another way.

As it would be impossible to know which would be the intention of the designer at
the execution of the game, during the conception of the game, a decision has to be taken
about which approximation should have a higher priority.

If the decision was to think that the behaviour trees would always be accomplished
as they were built, when a failure was reported, the game engine would try to fix it by
changing the entity associated with the behaviour tree that reported the failure. Let us
suppose that a simple example with an entity that represents a stone and a behaviour tree
that moves the stone from one point to another. The entity, as can be seen in Figure 6.7,
would have a BTExecuter component, a Physic component, a Graphic component and
some associated parameters such as static parameter that the Physic component would

6.5. Different Uses 51

take in order to represent the stone into the physic engine as a static and immovable
entity, or the model parameter that the Graphic component would take in order that the
rock would be rendered by the graphic engine. The behaviour tree would be like the one
in Figure 6.8, which launch, in parallel, both a movement and a sound of the movement.

<bluepr in t s >
. . .

<en t i t y type = "Stone">
<comp type = "BTExecuter"/>
<comp type = "Graphic"/>
<comp type = "Physic"/>

</ent i ty>
. . .

</b luepr in t s >

a) Blueprints file

<archetypes>
. . .

<en t i t y type = "Stone">
<a t t r i b

name = " s t a t i c "
value = " true"/>

<a t t r i b
name = " s o l i d "
value = " true"/>

<a t t r i b
name = "model"
value = " stone . n2"/>

</ent i ty>
. . .

</archetypes>

b) Archetypes file

Figure 6.7: Partial list of blueprints file

The problem with the association of the entity with the behaviour tree would be that
the entity would not be able to move itself nor to emit a sound. This problem would
arise according to a lack of specific components. Therefore, in this case, both a Move-To
component and a Sound component could be added to the entity during the execution
of the behaviour tree. In this way, the entity would be able to carry out the two actions
and the game engine would be faithful to the designed behaviour tree.

Figure 6.8: Behaviour Tree of go sounding behaviour.

52 Chapter 6. Self-Validated Behaviour Trees through Reflective Components

Otherwise, if the taken decision was to think that the entities are always well built,
and they are only able to carry out the actions that their components allow them, when a
failure arose, the game engine would try to fix it by changing the behaviour tree, instead
of the entity that was associated with. For this case let us suppose the example in which
there were an human entity and a behaviour tree that made the entity to fly in order to
take an object. The entity, as has been described before in Figure 6.5, would have some
components and some associated parameters whilst the behaviour tree, as can be seen in
Figure 6.9, would be made up of a Sequence node with two basic actions: Fly-To and
Take.

Figure 6.9: Behaviour Tree of to fly and to take.

In this case, the main problem of the association of the entity with the behaviour
tree, would be that the human entity would not be able to fly. This would be because
of that the Move-To component does not allow flight movements and the entity had not
got any other component that let it fly. Furthermore there could be another problem. it
would be that the entity was not able to take the specific resource, which is hard-coded
into the behaviour tree, due to the resource was too heavy for the strength of the entity,
which was described in the blueprints file (Figure 6.5). However, this example will be
only focused on the first problem.

The failure reported to the game would be caused by the Fly-To action. So, to solve
it, the game engine would have to replanning the carrying out of the goal that the Fly-To
action pursued. Consequently, one solution, as has been seen in Section 6.5.1, could be to
use the reflective component based system that we will propose in the next chapter. This
system would try to find different ways to achieve a specified goal helped by a planner.
In this way, the planner could find a sequence of actions that replaced the Fly-To action.
The goal of the Fly-To action is to move the entity from one point to another. So, if
the Fly-To action was a flight movement that ended in the top of a mountain and if the
entity was not able to fly, the planner could infer an equivalent sequence of actions that
were to move at the bottom of the mountain and then to climb to the top. The resultant
behaviour tree would look like the one shown in Figure 6.10, where the new branch is
stressed.

Another way to fix the failure could be to use case-base reasoning (CBR). If the system

6.5. Different Uses 53

Figure 6.10: Behaviour Tree of to move, to climb and to take.

was provided with a base of cases, which had some different cases/behaviours that achieve
different goals, when a failure arose, the system would look for the case/behaviour that
would be more similar to the behaviour that triggered the failure and that could be carried
out by the entity. To know the similarity between two behaviours the system would have
to have an ontology of behaviours. In this way the system could look for behaviours of the
same ontology class or behaviours of ontology classes with the nearest ancestor. However,
the system should have more factors to measure the similarity between two behaviours.
This factors may be related with the state of the game (the level, the boredom of the
player, etc.) or with the state of the entity (its life, its strength, etc.). Even during the
execution of the game, the base of cases could be increased by adding new cases that the
entity is carrying out.

However, these processes would not work properly every time. In the previous exam-
ple of the flight behaviour, the solution of replacing the failed branches could not be good
enough. This could happen when, for example, the mountain, in which the resource was
located, was too steep in order to climb to the top and there was not any other choice
offered by the planer nor by the base of cases. On the other hand, the solution of adding
new components, in order to fix the failures, could not be valid either in some cases.
Following the same example, a Fly-To component could be added to the entity and in
this way it would be supposed that the failure would be fixed. Although probably, the
AnimatedGraphic component, attached to the entity, would not have a flight animation.
So the complete flight action would not be carried out properly.

Chapter 7

Generating New Behaviours by
Means of Abstracted Plan Traces

The creation of behaviour trees is a difficult task that designers usually perform by means of a try-
and-fail process. This process is usually manual and the designers must take into account the great
amount of basic behaviours or actions and the different ways available to combine them. Moreover,
the ultimate goal of the design of behaviour trees is to create trees that work in different scenarios to
promote reusability and to cope with every different situation. Besides, developers, that implement
the basic behaviours, and designers, that use them to build these behaviour trees, are usually different
groups, so it is very important to have clear description for each behaviour to avoid misunderstandings.
Unfortunately, the consequence is that the final quality of the behaviour trees depends to a large extent
upon the ability and experience of designers.

Because of the previous reasons, we will specify a system that would be able to deal with behaviour
trees by generating different solutions, to achieve goals, having into account the different scenarios
in where the entity could stay. Our proposal would consist on the use of a combination of planning
and ontologies. A planner would be able to suggest a set of plans that might be easily turn into
behaviour trees. Then, the system could be adapted for design tools that helped designers in the
task of creating behaviour trees, or the system could be added to the game engine for suggesting
alternative behaviours to replace those that were not able of being carried out.

To develop this system by the traditional way, the information would be duplicated in the side of
the planner and in the C++ classes programmed for the game. This duplicity could lead to errors,
due to someone who implemented a new component might forget to replicate this new knowledge in
the side of the planner. Furthermore, the team of people that worked in the planner could not be
the same people who worked in the development of the C++ classes. This possibility would make
the coordination more and more difficult. In order to fix this problem, we will expose a reflective
component based system (Sánchez-Ruiz et al., 2009a,b) that would be specified to make the task of
generating the information needed by the planner easier. In this proposal the reflective components,
which would be used to define the different entities of the game, would be also those responsible
of generating the planner information. In this way, all the information would be defined in only one
place: the components.

The rest of the chapter runs as follow: In the next section, how to create behaviour trees, helped
by planning with ontologies, will be explained. Then how to use the reflective components to improve
the process will be shown. Following this section, an implementation approach will be developed and
finally, the different uses of this system will be discussed with two different examples: during the

55

56 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

Figure 7.1: Ontology that defines the domain vocabulary

design time and during the execution of the game.

7.1 Planning with Ontologies to Support the Behaviour Tree
Creation

In order to use planning, the domain and planning actions needed to be described by
using a formal language. Unfortunately, this formalization process would require someone
with experience in knowledge representation using symbolic languages, but hopefully the
time spent in this task would be recover later during the creation of behaviour trees.

The description of a planning domain includes two main parts: (a) the description of
the predicates, which conform the domain vocabulary, and how this predicates are related
with each other, and (b) a set of planning actions. We propose the use of ontologies to
represent the first part, that is, the vocabulary and the domain constraints. Ontologies
are a standard mechanism for knowledge representation and sharing based on conceptual
hierarchies defined using the is-a relation. Abstract concepts like Entity or Behaviour
are located towards the top of the taxonomy, and specific concepts like Ogre, Sword, or
Stab are classified towards the leaves of the taxonomies. Figure 7.1 shows an example of
ontology that intuitively describes different components of a game. The set of planning
actions, on the other hand, is strongly related to the available basic behaviours in the
game. Planning actions are described in terms of preconditions and effects using the
vocabulary available in the domain ontology.

Besides the primitive terminology, ontologies include logic axioms and descriptions
that relate the different terms and allow certain reasoning capabilities. Reasoning is based
on the formal representation of terms and descriptions using a knowledge representation
language such as OWL-DL W3C Consortium (2004), an standard language based on
Description Logics (DLs) Baader et al. (2003).

DLs are expressive subsets of First Order Logic with good reasoning properties that
are specially designed to represent structured knowledge. DLs represent knowledge us-

7.2. Generating the Planning Domain by Using Reflective Components 57

ing concepts, roles and individuals. Concepts represent categories or types described by
means of potential complex formulas, roles are binary relations, and individuals (concep-
tual instances) are entities that represent objects in the domain. For example, following
Figure 7.1, Room is a concept defined as a subconcept of the concept Place, inRoom is
a role that relates entities and rooms, and inRoom(ent1,room1) is an assertion that sets
that the individual ent1 is a type of Entity, room1 is a type of Room and besides the
entity ent1 is located in the room room1.

The use of ontologies would allow us to infer general plans from the specific ones
making them valid to be used in more cases than the concretes states of the world that
were given to the planner. Because of this, this proposal would be based in the use of
a planner called DLPlan1, which would be able to generalize the resulting plans using
the domain ontology. In this way, the inferred plans would not be only specific plans for
the scenario given to the planner. it could be say that the planner would turn plans into
general strategies that could be reused in a wide set of situations.

For example, if the planner determined that a NPC had to kill an enemy using a
melee attack, a normal planner would generate as many different plans as melee weapons
the NPC had. However, DLPlan was able to generalize those concrete plans and, in
this way, it would infer just one plan in which the weapon parameter had the generic
type MeleeWeapon. Later, in the example of Section 7.4.1.1 an extensive example will be
presented by showing how useful this feature of DLPlan is.

Finally, the process by which these plans/strategies would be turned into behaviour
trees could be manual or automatic depending on the tool that we had in mind. It
is important to remark that, in design tools, automate this process would not be too
important due to the fact that the planner would work with a limited model of the
game, whilst the designers would take into account much more factors (like story plot or
special situations) in order to select behaviours, to modify preconditions under certain
circumstances and to set the priority of each alternative. In these kinds of tools, the
inferred plans would be only suggestions that designers would modify, validate or reject.

On the other hand, to integrate this system into the game engine, the process by
which inferred strategies would be turned into behaviour trees should be automatic in
order to use them directly. It is obvious because during the execution of the game this
process should be transparent to the user.

7.2 Generating the Planning Domain by Using Reflective
Components

To be able to use planning techniques, a symbolic representation of the world would be
needed as well as the actions that each type of entity can perform. The basic approach
would be to create this description from scratch. However, this information would be, at
least partially, already in the C++ classes, which programmers would have to implement
in order to develop the game, and in the configuration files, which would define the

1Freely available at http://sourceforge.net/projects/dlplan/

58 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

different kinds of entities. Therefore, as it will be seen, this would lead to a not desirable
duplication of information. In this section, our proposal to avoid it will be described
making use of self-described software (reflective components) and files with enriched
entity descriptions.

To summarize, the planner would need two different kind of information:

• A symbolic representation of the world. As it has been said, the vocabulary to
describe the world would be defined by means of an ontology similar to the one
shown in Figure 7.1.

• A set of operators that describe all the actions that can be carried out in the world.
This operators should somehow codify which ontological entities would be able to
carry out which actions over the environment.

On the implementation side, the code base would have a representation of every
different entity type in the virtual environment. On the component approach, this usually
comes specified in the form of the blueprints file and the archetypes file (Figure 7.2). All
of this information would be equivalent to the ontology used by the planner.

As regards the operators, in order to allow an entity to be able to execute an action
(which would have to be defined as an operator into the planner), this entity should be
provided with a concrete skill. This is usually done by creating a new component and
attaching it to the entity using the blueprint file. Once again, the information would be
located, and some of it duplicated, in separated places: components and operators.

Therefore, both kind of knowledge that the planner needed, would be duplicated in
the implementation side. This duplicity could lead to errors, due to the fact that someone
who implemented a new component could forget to replicate this new knowledge into the
symbolic representation. This could be worse in big projects because the team of people
that works in the generation of the planning domain are not the same people that work
in the developing of the game itself. In order to fix this problem, our proposal would
consist in keeping the whole knowledge in the components. Developers would be those
responsible for creating components that would be able to describe themselves in terms
of the symbolic description that the planner would need to perform its task. So, in this
way, the knowledge would be centralized in only one place, avoiding duplicates, mistakes
and errors. As it will be seen later, every time that a new component was created, it
would be automatically queried to regenerate the domain description that the planner
would use.

In order to semi-automate the task of building the symbolic description that the
planner would need, the process would start with a base domain ontology that could
be seen as the basic vocabulary of the game genre, which might be independent of
the concrete game that would being developed. This domain ontology would be taken
for granted and it would include the basic vocabulary for describing the new type of
entities and actions that the game would incorporate. In other words, the process would
start with an ontology similar to the one in Figure 7.1 but without the leaves that

7.2. Generating the Planning Domain by Using Reflective Components 59

<bluepr in t s >
. . .

<en t i t y type = "Ogre"
ontType = "Ogre"
parentOnt = "Monster">

<comp type = "BTExecuter"/>
<comp type = "Graphic"/>
<comp type = "Physic"/>
<comp type = "Take−Cover"/>
<comp type = "Melee−Attack"/>
<comp type = "Charge−At"/>
<comp type = "Take"/>
<comp type = "Move−To"/>

</ent i ty>
<en t i t y type = "Goblin "

ontType = "Goblin "
parentOnt = "Monster">

<comp type = "BTExecuter"/>
<comp type = "Graphic"/>
<comp type = "Physic"/>
<comp type = "Take−Cover"/>
<comp type = "LongRange−Attack"/>
<comp type = "Charge−At"/>
<comp type = "Take"/>
<comp type = "Move−To"/>
<comp type = "Sneak−To"/>

</ent i ty>
. . .

</b luepr in t s >

a) Blueprints file

<archetypes>
. . .

<en t i t y type = "Ogre">
<a t t r i b

name = " s t r ength "
value = " st rong"/>

<a t t r i b
name = "weapon−tech "
value = " rudimentary"/>

<a t t r i b
name = " he ight "
value = " t a l l "/>

</ent i ty>
<en t i t y type = "Goblin">

<a t t r i b
name = " s t r ength "
value = "weak"/>

<a t t r i b
name = "weapon−tech "
value = "both"/>

<a t t r i b
name = " he ight "
value = " shor t"/>

</ent i ty>
. . .

</archetypes>

b) Archetypes file

Figure 7.2: Partial list of blueprints file

60 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

correspond to the concrete types of entities in the game. Then this base ontology would be
automatically completed using the knowledge of the architecture of reflective components.

With the purpose of populating the ontology with the new entities, the system would
use the blueprints file and the archetypes file. As it is shown in Chapter 3, these files
would have an entry per game entity, describing the set of components and attributes
that it had.

For example, Figure 7.2 shows two types of entities: the Ogre and the Goblin. These
entities differ because of their different abilities, such as differences in their types of
attack, and the parameters of these abilities. In this case, both units can perform Melee
and Charge-At attacks but only the Goblin can perform Long-Range attacks. Besides,
both entities are able to take objects, but the Ogre is able to take heavier things due
to its stronger strength. In a similar way, both units can take cover but an Ogre needs
higher cover to hide itself because of its size.

Two special fields, in every entity, should be added to the typical blueprints file
explained in Chapter 3. They would be the ontType and the parentOnt, where the first
one would set the corresponding symbolic name for the concept that would represent this
entity in the ontology and the second one would specify the branch or branches in which
it should be added (which concepts would be the parents of the new concept). With
these new fields, the system would be able to know where the new concepts should be
added into the ontology in order to represent these new types of entities.

Once the entity had been added to the ontology in form of concept, the system would
add information about its properties and the actions that it was able to carry out. This
process would be done by iterating over the list of components that the entity had, asking
them about which information would have to be injected to the corresponding concept.
To simplify operator preconditions and postconditions and the concept descriptions, some
auxiliary predicates could be defined on the ontology:

canWalk = en t i t y and h a s S k i l l . walk
canMove = canWalk or canRun or canSneak
canTake = en t i t y and h a s S k i l l . take

. . .

As an example, the Ogre entity that appears in Figure 7.2 can be considered. When
the system iterated over the components, its description would become:

Ogre = NPC and canWalk and canTake and hasStrength . s t rong . . .

On the other hand, planning operators would correspond to basic behaviours that
would be implemented as software components. Each software component would know
which parameters would be required and the conditions that the current state of the
world should hold in order to be applicable. However, this information is usually written
procedurally in C++ or other programming language. We propose to use components
that were able to describe themselves by means of preconditions and postconditions
using the vocabulary in the domain ontology. That is, each component that represented
a behaviour would be able to provide, though its programming interface, the planning
action that described it.

7.2. Generating the Planning Domain by Using Reflective Components 61

WALK−TO(?who: alive, ?target: entity)
vars : ?r
pre: canWalk (?who), inRoom(?who, ?r), inRoom(?target, ?r), aloneInRoom(?who)
post: nextTo(?who, ?target)

SNEAK−TO(?who:alive, ?target: entity)
vars : ?r , ?e
pre: inRoom(?who,?r), inRoom(?e, ?r), enemyOf(?e,?who), undetected(?who)
post: canSneak(?who), nextTo(?who, ?target), undetected(?who)

TAKE(?who: alive, ?what: resource)
vars : ?w, ?s
pre: canTake(?who), nextTo(?who,?what), hasWeight(?what, ?w),

hasStrength(?who, ?s), enoughStrength(?s, ?w)
post: inInventary(?who, ?what)

MELEE−ATTACK(?who: alive, ?w: weapon, ?target: entity)
vars : ?t
pre: canMeleeAttack(?who), nextTo(?who, ?target), hasWeapon(?who, ?w),

meleeWeapon(?w), hasTechnology(?w, ?t), canHandleWeaponTech(?who, ?t)
post: #removeInstance(?target)

LONGRANGE−ATTACK(?who: alive, ?w: weapon, ?target: entity)
vars : ?t
pre: canLongRangeAttack(?who), nextTo(?who, ?target), hasWeapon(?who, ?w),

longRangeWeapon(?w), hasTechnology(?w, ?t), canHandleWeaponTech(?who, ?t)
post: #removeInstance(?target)

TAKE−COVER(?who: alive, ?c: cover)
vars : ?r , ?s1, ?s2
pre: canTakeCover(?who), uncovered(?who), inRoom(?who, ?r), inRoom(?c, ?r),

cover(?c), hasSize(?who, ?s1), hasSize(?c, ?s2), lessEqSize(?s1, ?s2)
post: covered(?who)

CHARGE−AT(?who: alive, ?w: weapon, ?target: entity)
vars : ?r
pre: canCharge(?who), detected(?who), inRoom(?who, ?r), inRoom(?target, ?r),

nextTo(?who, ?target), hasWeapon(?who, ?w), meleeWeapon(?w),
hasTechnology(?w, ?t), canHandleWeaponTech(?who, ?t)

post: #removeInstance(?target)

Figure 7.3: Planning operators corresponding to basic behaviours.

62 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

Figure 7.3 shows some of the planning actions that might be available in a game.
For example, the TAKE operator would be generated by the Take component, and the
precondition of the planning operator would depend on the strength of the entity that
was performing the action. This is because the component would depend on the attribute
strength defined in the archetypes file (Figure 7.2). When the planner tried to use this
operator with an Ogre, or a Goblin, the planner would check if the entity was able to
take things and if the entity had enough strength to take the resource. As the strengths
of both entities had been previously asserted in the ontology, and due to the fact that
the Ogre was stronger than the Goblin, it would be able to take heavier objects.

7.3 Implementation

With the purpose of reflecting the ideas exposed in Section 7.2, we propose the implemen-
tation shown in Code Block 6. The IComponent interface would be extended with two
methods that should be implemented by every component class that inherits from this
interface. The first method, getOperators() would return a list of strings in which each
element of it represented a new operator describing an action that the component was
able to execute. Meanwhile, the second method, getAbilities(), would return another
list of strings where each element represented an ability or skill that the component give
to the entity.

Similarly, the Entity class would be extended with three methods. The first two ones
would only return the ontology type name (of the concept which was to be created) and
the parents of this concept. Both would be taken from the blueprints file (Figure 7.2).
The third method, getAbilities(), would iterate over its components invoking their
getAbilities()method. Its only propose would be to merge the lists that they reported.

So, in order to generate the planning domain with these extensions, only two methods
would be needed. The createOperators() method would collect all the operators that
the components, which game entities had, generated. In the proposed implementation of
Code Block 6, a list of components with one component of each kind would be supposed.
So, the method would only iterate over this list merging all the lists reported, and then,
the resultant list would be given to the planner. If this list of components did not exist,
the same result could be achieve by collecting the operators of each entity, having in
mind that some components could be repeated over the different entities. Consequently,
the method would have to drop the duplicated operators.

The other method needed to generate the planning domain would be the createAnd-
FillConcepts() method, which would iterate over the list of entities creating the con-
cepts into the planner and adding their abilities. A createConcept() method in the
planner would be supposed for creating new concepts. This method would need the
concept name and a list names that represented its parents concepts in the ontology.
Meanwhile, a setAbilities() method would be supposed into the concepts.

So, the process of generating the planning domain would run as follow: 1) Differ-
ent entities would be created from the blueprints file and they would be filled from the
archetypes file. 2) The operators would be added to the planner by the createOperators()

7.3. Implementation 63

method. 3) The concepts of the planner would be created, and filled with their abilities,
by the createAndFillConcepts() method.

class IComponent {
...
virtual void spawn(bool full);
virtual List[string] getOperators() {

return NULL;
}
virtual List[string] getAbilities() {

return NULL;
}
...

};

class Entity {
List[IComponent] _components;
string _ontType;
string _parentOnt;
...
string getOntType() {

return _ontType;
}
List[string] getParentOnt() {

return _parentOnt;
}
List[string] getAbilities() {

List[string] abilities;
for each IComponent c in _components {

abilities.merge(c.getAbilities());
}
return abilities;

}
...

};

class PlanDomainGenerator {
Planner _planner;
List[Entity] _entities;
List[IComponent] _kindsOfComponents;
...
void createOperators() {

List[string] operators;

64 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

for each IComponent c in _kindsOfComponents {
operators.merge(c.getOperators());

}
_planner.addOperators(operators);

}
void createAndFillConcepts() {

for each Entity e in _entities {
_planner.createConcept(e.getOntType(),e.getParentOnt());
Concept c = _planner.getConcept(e.getOntType());
c.setAbilities(e.getAbilities());

}
}
void createPlanningDomain {

//from blueprints and archetypes.
_entities = createEntities()
createOperators();
createAndFillConcepts();

}
...

}

Code Block 6: Pseudo-code of the implementation

7.4 Different Uses

The reflective component based system that we are proposing in this chapter can be used
in different ways: During the design time and during the execution of the game.

During the design time, designers would use tools that help them in the difficult task
of generating behaviour trees. In this way, a design tool based in this system could be
created. It would help designers by giving different alternatives to achieve a goal, which
the designer wanted to resolve, under specific circumstances of the environment that the
designer proposed.

During the execution of the game, the game itself would use the system to create
alternatives to achieves goals that were not achieved by any reason. In this way, the
game engine would be more robust having the possibility of create new ways of achieving
the goals when some branches of the behaviour tree had not been carried out, under
special circumstances of the environment, in the way that the designers had proposed.

7.4.1 During the Design Time

Figure 7.4 summarizes our proposal to support the AI designer during the creation of
behaviour trees. By means of a graphical interface, that could be a simplified version of

7.4. Different Uses 65

Figure 7.4: Interactive process to create Behaviour Trees

the game interface, the designer would set up a particular game scenario and some goals.
Next, the system would generate the equivalent symbolic description using the planning
language, and by means of a planner, it would compute all the possible plans that solved
the problem. Then the designer could use these plans to complete the behaviour tree that
was currently building. Let us remember that behaviour trees are useful in a broad set of
scenarios and thus, this would be an interactive process in which the designer proposed
different scenarios to the system and incrementally he would complete the behaviour tree
using the retrieved solutions.

In a simple approach, the process, by which plans were integrated to the current
behaviour tree, would be manual, i. e., the designer would be the only person responsible
of changing the behaviour tree to add the new branches. In a more complicated approach,
how to automate this task, or at least how to provide more support to the designer,
should be considered. However, it is important to remark that the planner works with a
limited model of the game, while the designer can take into account much more factors
(like story plot or special situations) in order to select behaviours, modify preconditions
under certain circumstances and set the priority of each alternative. The planner output,
therefore, would only show different solutions that the designer should modify, validate
or reject. Anyway, preconditions of the planning operators and the generalized plans
computed by DLPlan would be a good source of inspiration to define the guards of new
nodes in the tree.

Now we are going to expose how to build behaviour trees using our approach, i.e.,
taking advantage of planning techniques to support designers during the process. In
previous sections we have described how, from the programming point of view, world en-
tities would be defined by means of software components that provide different abilities,
and how those components would describe themselves using preconditions and postcon-
ditions. Besides, those formal descriptions was made in terms of the vocabulary defined
in an ontology that serves as a joint point between programmers and designers. Using
the ontology and the component descriptions a planning domain had been described,
and this way, designers was able to propose different problems to the planner with the
purpose of getting all the possible solutions for concrete scenarios.

66 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

7.4.1.1 Example

Let us expose a concrete example in which a behaviour tree should be created to control
a greedy goblin that had entered in a room to discover a shiny diamond in the oppo-
site corner. Complex games usually provide intuitive interface for designers to describe
concrete scenarios or even to define new levels from scratch (McNaughton et al. (2004)).
So, the existence of one of these graphical interfaces to define different initial states and
goals without having to deal with logical predicates but just setting items and units in
the map and defining theirs attributes, would be assumed.

Let us start with the simplest situation, where the goblin and the diamond was in
the same room and there was no enemies near. This goblin would be a warrior and
thus it would be well armed with a short sword, a small knife, a short bow and a sling.
The room, in turn, would contain some furniture: a table, two chairs and a bookcase.
Although the designer did not know it, behind the scene this information would be
automatically translated to a symbolic representation for the planer using the vocabulary
in the ontology:

Goblin (gob l in1) , hasWeapon (gobl in1 , kn i f e 1) , Knife (kn i f e 1) ,
hasWeapon (gobl in1 , sword1) , ShortSword (sword1) , . . . ,
inRoom(gobl in1 , room1) , inRoom(table1 , room1) , Table (tab l e1) ,
. . . , inRoom(diamon1 , room1) , Diamon(diamon1)

Now, when the designer defined the goal (the goblin gets the diamond), the planer
would show all the possible plans that accomplishes it. In this case there would be only
one possible plan: walk until the diamond location and take it:

1. WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

At this point, using the abstraction capabilities of DLPlan the system would be able
to point out that this plan would be applicable in several more scenarios, because the
plan only would require that the goblin1 was an entity that can walk and take things and
that it was alone in the room, and that the diamon1 was a small item. The generalization
process followed by DLPlan to reach this conclusion is based on the ontological domain
definition and it is described in Sánchez-Ruiz et al. (2009).

Using this information, the designer would build a behaviour tree like the one shown
in Figure 7.5, that represents the only plan available in this scenario. It is important to
mention that plans generated using the planner are sequences of actions that correspond
to the leaves of the behaviour tree. The definition of internal nodes in the tree to group
basic actions and to represent different alternatives is responsibility of designers.

Next, the designer should complete this basic behaviour tree to make it useful in
other scenarios as well. For example when there was an enemy in the same room that
had already detected the goblin. This time the planner would compute several more
possible plans:

1. ChargeAt(goblin1,sword1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

7.4. Different Uses 67

Figure 7.5: Example of a behaviour tree creation (first version)

2. ChargeAt(goblin1,knife1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

3. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

4. TakeCover(goblin1,table1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

5. TakeCover(goblin1,bookcase1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

6. TakeCover(goblin1,bookcase1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

It is important to mention that during the computation of these plans the planner
had performed some interesting inferences using the domain knowledge. For example, the
planner had used the table and the bookcase as possible covers for the goblin because they
were big enough (chairs were not), and different weapons had been classified depending
on their range in melee or long range weapons.

Actually, the six generated plans would be in fact two different strategies parametrized
with different values: 1) to charge against the enemy and then to take the diamond; 2)
to look for a cover, to attack the enemy from the distance and then to take the diamond.
Again, the system would take advantage of the abstraction capabilities of DLPlan to
compute the weakest scenario in which each plan was applicable, and this way, it would
reduce the six concrete plans to only two generalized plans:

1. ChargeAt(goblin1,sword1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

2. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

The first plan would be applicable if the goblin1 was an entity that was able to charge,
walk and take; the goblin1 had a melee weapon called sword1 ; the enemy1 was an enemy
unit that had already detected the goblin; and if the diamon1 was a small item. In the

68 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

Figure 7.6: Example of a behaviour tree creation (second version)

same way, the second plan would be applicable if the goblin1 was an entity that was able
to perform the corresponding actions, it had a long range weapon bow1, and the table1
was a cover of medium size.

The computation of plans and the later generalization would be performed behind
the scene, and so, the designer would only see the generalized plans. Then, he would
have to complete the previous behaviour tree to incorporate the new possibilities. The
resulting behaviour tree could be similar to the one shown in Figure 7.6 where the new
branches are highlighted. Basically, the previous tree is now a sequence node that is only
applicable if there are no enemies in the room, and in order case the entity would have
to kill the enemies first. Furthermore, there are two ways to kill an enemy, either charge
at him or take a cover and attack him from the distance.

Finally, the designer could want to complete the behaviour tree with new branches
that would be executed when there was an enemy in the room but it had not detected
the goblin yet. This time, the planner would compute the following solutions:

1. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

2. TakeCover(goblin1,table1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

3. TakeCover(goblin1,bookcase1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

4. TakeCover(goblin1,bookcase1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

7.4. Different Uses 69

Figure 7.7: Example of a behaviour tree creation (final version)

5. SneakTo(goblin1,enemy1), MeleeAttack(goblin1,sword1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

6. SneakTo(goblin1,enemy1), MeleeAttack(goblin1,knife1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

7. SneakTo(goblin1,diamon1), Take(goblin1,diamon1)

In turn, these plans would be generalized in three strategies: 1) take a cover, attack
from the distance, go to the diamond and take it; 2) sneak until the enemy, stab him,
go until the diamond and take it; and 3) sneak until the diamond and take it (without
killing the enemy).

Next, the designer would add these new alternatives to the behaviour tree, obtaining
something similar to Figure 7.7. In this case, the strategy of looking for a cover and
attacking using a long range weapon was already in the previous behaviour tree so the
designer would only need to add the other two plans. Basically, the designer would add
a new way to kill the enemy (sneak and stab) and another new way to get the resource
without killing the enemy (sneak for resource).

7.4.2 During the Execution of The Game

During the execution of a game, so many unexpected things can happen, and not all of
them can be anticipated by the designers. In spite of this, the final result must control

70 Chapter 7. Generating New Behaviours by Means of Abstracted Plan Traces

every different situation and should contemplate that the designers may forget to handle
some specific situations. As it has been widely explained in Chapter 6, the behaviour
trees can fail in the associations with different entities or the behaviour trees can fail
because of the state of the game environment. So, to fix the problems that can happen
in them, the reflective component based system exposed in this chapter can be adapted
to deal with the failures produced during the execution of the game.

As during the design time, during the execution of the game, the system could offer
different ways to achieve concrete goals under different situations of the environment.
The different alternatives offered by the system would be used to fix behaviour trees
that for any reason were not be executed. There would be, however, some differences
in the way that the system was used. The first difference, with the system proposed
for the tool specified in the previous section, would be that the system would have to
produce behaviour trees automatically in order to be integrated in the game engine. This
is because the game engine would need the fixes in form of behaviour trees to use them
as the same way as behaviour trees designed by designers were used. So, plans given as
in the previous section would not suffice.

Another difference would be that there would not be any person to choose which
choices that the planer gave would have to be taken. So, in this approach, the game
engine would have to choose between the different choices that the system provided. At
this point, a measure of similarity would be needed to compare the different choices,
offered by the planer, with the behaviour that failed during the game and in this way
choosing the more similar choice to replace it.

Finally, another system to turn into logical predicates the actual state of the envi-
ronment, and the parameter that the entities had, would be assumed.

Thus, to summarize, the system would work in a similar way as in the previous tool,
but with the differences that the translation of the plans into behaviour trees would have
to be automatic, the choice to fix the tree would be choosing automatically having into
account a measure of similarity, and the environment given to the planner would not be
proposed by anybody, it would be directly taken from the game engine.

Chapter 8

Conclusions

In the beginning of this thesis has been shown that authoring the AI for non-player
characters (NPCs) in modern video games is an increasingly complex task. There exists
a tension between designers and programmers because designers want to include their
narrative story lines in the game, and it requires a big effort make by programmers
because implement AI specified by good story tellers, who are not programmers, usually
is a difficult task. Furthermore, the process requires some revisions because programmers
do not usually get what designers really want in the first try and even though they get
it, designer may want to refine what they have previously described.

Nowadays, the industry is making a big effort to separate the collaboration between
both groups as much as possible, so programmers need to provide designers with mech-
anisms which will allow them to design history plots through character behaviours. Be-
cause of this problem, we have proposed the use of Behaviour Trees in order to let
designer develop whatever they want. Behaviour Trees have shown in recent times that
they may be one of the choices for the future to create character behaviour, but they are
still being a difficult way to create behaviours for designers without programming skills.

At the same time, we have explain that creating design tools, or systems, with the
purpose of developing character behaviours, is usually a tedious task because all the
information that entities of the game have, must be duplicated in the field of the tool,
or system. Even, the maintenance of these tools, or systems, during the developing time
of the game, can turn into a nightmare when programmers are continuously adding or
modifying game entities, because every change in the game should be replicated in every
design tool in order to maintain them actualized.

We have chosen a component-based system for several reasons. It solves the principal
problems presented in object-management systems, it is the choice of actual videogames
for creating game entities and it is easy to link with Behaviour Trees. The last assertion
is because every component can be seen as an ability/skill that an entity has while, in
a Behaviour Tree, leaf s or final actions are simple behaviours that the entity has to
execute. So, it can be supposed that every component would be able to carry out one or
more actions and, at the same time, every action would be able to be carried out by one
or more components.

71

72 Chapter 8. Conclusions

In that sense, and having in mind everything told in this paper, we have extended
the IComponent interface with the purpose of avoiding replicating the information of the
game entities into the developed systems and tools. In this way, the whole knowledge
is kept in the same place, the components, and it is not duplicated. Consequently,
the components are those responsible of providing different tools and systems with the
information that they need to work, either before they have started their processing,
by generating the knowledge that they need; or during their processing, by giving them
answers to the queries that these tools/systems send.

We have proposed two different systems based on the concept of Reflective Compo-
nents and both of them provide promising results. The first one, proposed for checking
associations between behaviours and concrete entities, is being developed on a serious
game called Javy 2 (Gómez-Martín, 2008) that is under development by our department
(). In this approach, Reflective Components can check associations both when the Be-
haviour Trees are being developed during design time, and when the Behaviour Trees
are being executed. The difference between them is that at design time, entities and
components are not full initialized, because different engines such as graphic or physic
engines are not instantiated in order to make the system lighter. Some examples of the
code is attached in Appendix A. As a future work we will continue developing this system
to fully integrate it with every entity and component of the game both at design time
and during the execution of the game. We could also think in developing a complex
graphical tool that let designers create and check behaviour trees in an easier way.

The second proposed system is only a proposal yet, however it could be in the future
a good field to research. In this way, as a future work we could consider to give a more
concrete specification for this proposal with the purpose of developing them and testing
which kinds of results we would achieve. Then, in order to prove the proposal, we could
offer to different designers both choices: to create Behaviour Trees with or without the
help of the system. After that, we could measure how long it take to develop complex
behaviours with or without the system and we could put face to face behaviours of
different choices and measure with kind of behaviours obtains better results.

As another future work, we can think in developing character behaviours with these
tools in order to create actors for interactive storytelling (Mateas and Sengers, 1999).
Nowadays, environments for interactive storytelling are usually developed as a character-
based multi-agent system in which every character of the story is controlled by an agent
that perceive the environment, think about its possibilities re-evaluating them and acts
on the environment. Consequently, the way in which different actors are created is not
important and, in the same environment, characters controlled by different methods
can inhabit. This way could be really useful to prove how our character reacts into an
environment in which other kinds of character inhabit.

There are many ways of creating behaviours for characters in interactive storytelling.
For example we can found agents directed by goals that usually are BDI agents that do
not reconsider very often their goals. They can be implemented by Hierarchical Task
Networks (HTNs) (Cavazza et al., 2002a,b, 2001), by languages like ABL (O.Riedl and
Stern, 2006) or by similar ways. Feelings can be added to make them more realistic (Pizzi

73

et al., 2007; Peinado et al., 2008) and, as well, agents with multi-layer choices (Imbert
and de Antonio, 2005; Spinola et al., 2008) or extended BDI model (Grimaldo et al.,
2008) can be found in storytelling.

So, this would be a complete scenario to prove our proposals in the future. In theory,
Behaviour Trees would react well in these kinds of environments because they are directed
by goals but at the same time they have the possibility of re-evaluate these goals due to
many factors. Thus they would be realistic behaviour if they are well built. An incentive
of proving our proposals in this kind of environment is that there exist many models
to take as references and to incite us to improve our approaches, when they presented
disadvantages facing with other approaches such as those that we have commented before.

To finalize let us say that the Reflective Components appear a good field in which
people can investigate in order to facilitate the creation of tools and system related to
component-based systems. We focused all the paper in how Reflective Components can
help people in the task of creating character behaviour, but it can be extended to many
different fields always that they use a component-based system.

Appendix A

Javy 2 code

In this appendix the most relevant parts of the Javy 2 code related with Reflective Components
can be seen. Javy 2 (Gómez-Martín, 2008) is a serious game that is under development by our
department. On this game we have developed the concrete proposal told in Chapter 6 with the
purpose of knowing failures produced during associations between concrete character and Behaviour
Trees.

So we have selected the pieces of code that we consider more relevant. However, Classes as
Entity class have been omitted due to their simplicity.

A.1 Messages

Firstly we present an example of a message and the base class of every message. The
base class has some macros declared in order to eases the creation and the use of them.
Their implementation will be omitted except of macros defined in the CType class. This
class is used to give the same id to every instance of the same class and, in this way, we
can know which is the class of every message.

namespace OIM
{

class CType
{
public:

/**
Constructor
*/
CType(){}

/**
Equality operator.
*/

75

76 Appendix A. Javy 2 code

bool operator==(const CType& id) const {
return this == &id;

}
};

/**
Type Id macros.

*/
#define DECL_TYPE \
public:\

static OIM::CType TypeId; \
static const OIM::CType &Type; \

virtual const OIM::CType& getType() const; \
virtual bool IsA(const OIM::CType &) const; \

private:

#define IMPL_TYPE(Tipo) \
OIM::CType Tipo::TypeId; \

const OIM::CType &Tipo::Type = Tipo::TypeId; \
const OIM::CType& Tipo::getType() const { return Tipo::TypeId; } \

bool Tipo::IsA(const OIM::CType &id) const
{ return id==Tipo::TypeId; }

#define IMPL_SUBCLASS_TYPE(Tipo, Superclass) \
OIM::CType Tipo::TypeId; \

const OIM::CType &Tipo::Type = Tipo::TypeId; \
const OIM::CType& Tipo::getType() const { return Tipo::TypeId; } \

bool Tipo::IsA(const OIM::CType &id) const
{ return (id==Tipo::TypeId) || Superclass::IsA(id); }

#define IS_STRICT_INSTANCE_OF(obj, Tipo) \
((obj).getType()==Tipo::TypeId)

#define IS_INSTANCE_OF(obj, Tipo) \
((obj).IsA(Tipo::TypeId))

}//OIM

Code Block 7: Code of the CType.h file

namespace OIM
{

A.1. Messages 77

class CMessage : public Base::CContDeRef
{

DECL_TYPE();
public:

MSG_DECLARA_PTR(CMessage);

/**
Constructor
*/
CMessage();
/**
Virtual Destructor. It must be implemented in children.
*/
virtual ~CMessage() {}

};

} // namespace OIM

Code Block 8: Code of the CMessage.h file

As it can be seen in the CGoToMsg class, the way in which messages are declared is
very easy using macros. Every MSG_DEFINE_PROPERTY macro creates a variable and its
getter and setter methods.

namespace OIM
{

class CGoToMsg : public CMessage
{

DECL_TYPE();

public:
MSG_DECLARA_PTR(CGoToMsg);

/**
Constructor.
*/
CGoToMsg() : _Distance(0), _Finished(false),

_Successfully(true) {}

/**

78 Appendix A. Javy 2 code

Destructor.
*/
~CGoToMsg() {}

MSG_BEGIN_PROPERTIES(CGoToMsg);

/// Position to achieve
MSG_DEFINE_PROPERTY(TVector3, Destination);

/// Minimum distance to the object for stopping.
MSG_DEFINE_PROPERTY(float, Distance);

/// True when the action is finished.
MSG_DEFINE_PROPERTY(bool, Finished);

/// True if the goal was achieved.
MSG_DEFINE_PROPERTY(bool, Successfully);

MSG_END_PROPERTIES();
};

} // namespace OIM

Code Block 9: Code of the CGoToMsg.h file

#include "GoToMsg.h"

namespace OIM {
IMPL_TYPE(CGoToMsg);

} // namespace OIM

Code Block 10: Code of the CGoToMsg.cpp file

A.2 Component

The IComponent interface have been extended with the spawnInDesignTime method in
order to initialize the entity when we are at design time, and with the canCarryOut
method in order to know which messages the component is able to carry out.

A.2. Component 79

namespace OIM
{

class IComponent : public CCommunicationPort {
DECL_TYPE();

public:
/**
spawn method of the component at design time
*/
virtual bool spawnInDesignTime

(COIMObject* obj, OIM::CMap *map,
const Maps::CMapEntity *entity);

/**
Virtual method that every component must overwrite in
order to specify which messages they are able to carry
out.
*/
virtual bool canCarryOut(CMessage* message) {

return false;
}

} // namespace OIM

Code Block 11: Code of the IComponent.h file

Now, some examples of how these methods are implemented by specific components
are shown.

namespace OIM
{

bool CAvatarComponent::spawnInDesignTime
(COIMObject* obj, OIM::CMap *map,
const Maps::CMapEntity *entity) {
if(!IComponent::spawnInDesignTime(obj,map,entity))

return false;
return true;

}

bool CAvatarComponent::canCarryOut(CMessage* message) {
if ((IS_INSTANCE_OF(*message, OIM::CPhysicMovementMsg))

|| (IS_INSTANCE_OF(*message, OIM::CHumanMovementMsg)))
{

80 Appendix A. Javy 2 code

CMoveEntityToMsg::Ptr
message(MsgBuilder<CMoveEntityToMsg>());

return _obj->canCarryOut(message,this);
}
return false;

}
} // namespace OIM

Code Block 12: Code of the CAvatarComponent.cpp file

namespace OIM
{

bool CGraphicComponent::spawnInDesignTime
(COIMObject* obj, OIM::CMap *map,
const Maps::CMapEntity *entity) {
if(!IComponent::spawnInDesignTime(obj,map,entity))

return false;

// We read the file name
std::string modelname;
if (entity->existsKey("modelfilename"))

modelname = entity->getAtribute("modelfilename");

if (modelname.empty())
assert(entity->getModelo() &&
"Graphic Component without model!");

return true;
}

bool CGraphicComponent::canCarryOut(CMessage* message) {
return IS_INSTANCE_OF(*message, OIM::CMoveEntityToMsg) ||

IS_INSTANCE_OF(*message, OIM::CActivateMsg);
}

} // namespace OIM

Code Block 13: Code of the CGraphicComponent.cpp file

A.2. Component 81

namespace OIM
{

bool CGoToComponent::spawnInDesignTime
(COIMObject* obj, OIM::CMap *map,
const Maps::CMapEntity *entity) {
if(!IComponent::spawnInDesignTime(obj,map,entity))

return false;
return true;

}
bool CGoToComponent::canCarryOut(CMessage* message) {

if (IS_INSTANCE_OF(*message, OIM::CGoToMsg) &&
!((OIM::CGoToMsg*)message)->getFinished()) {
// We have to check if there is another component
// in the entity that can carry out a
// CSteeringMsg message.
CSteeringMsg::Ptr msg(MsgBuilder<CSteeringMsg>().

Destination(
((CGoToMsg*)message)->getDestination())
);

return _obj->canCarryOut(msg, this);
}
return false;

}
} // namespace OIM

Code Block 14: Code of the CGoToComponent.cpp file

namespace OIM
{

bool CLogicDoorComponent::spawnInDesignTime
(COIMObject* obj, OIM::CMap *map,
const Maps::CMapEntity *entity) {
if(!IComponent::spawnInDesignTime(obj,map,entity))

return false;

if (!entity->existsKey(DURATION) &&
!entity->existsKey(SPEED))
fprintf(stderr,
"Warning: Door without establish speed.\n");

82 Appendix A. Javy 2 code

if (!entity->existsKey(DISTANCE))
fprintf(stderr,
"Warning: Door without establish distance.\n");

if (!entity->existsKey(AXIS))
fprintf(stderr,
"Warning: Door without establish axis.\n");

return true;
}
bool CLogicDoorComponent::canCarryOut(CMessage* message) {

if(IS_INSTANCE_OF(*message, OIM::CTriggerMsg) ||
IS_INSTANCE_OF(*message, OIM::CUseMsg)) {
// We need to move both physic entity and graphic
// entity. At least one of them because if both
// are not, a door does not make sense.
CMoveEntityToMsg::Ptr message(

MsgBuilder<CMoveEntityToMsg>()
);

return _obj->canCarryOut(message,this);
}
if(IS_INSTANCE_OF(*message, OIM::CMouseMsg)) {

// It is only accepted if there are an action
// to do.
return ((CMouseMsg*)message)->getLeftClicked() ||

((CMouseMsg*)message)->getRightClicked() ||
((CMouseMsg*)message)->getTouched();

}
if(IS_INSTANCE_OF(*message, OIM::CLockedMsg)) {

return true;
}
return false;

}
} // namespace OIM

Code Block 15: Code of the CLogicDoorComponent.cpp file

namespace OIM
{

bool CSoundComponent::spawnInDesignTime
(COIMObject* obj, OIM::CMap *map,

A.2. Component 83

const Maps::CMapEntity *entity) {
if(!IComponent::spawnInDesignTime(obj,map,entity))

return false;
const char* pcFile;

if (entity->existsKey("file"))
pcFile = entity->getAtribute("file");

else
pcFile = "";

assert(strlen(pcFile) < sizeof(_filename));

strcpy(_filename, pcFile);

return true;
}

bool CSoundComponent::canCarryOut(CMessage* message) {
if (IS_INSTANCE_OF(*message, OIM::CPlayMsg))
{

// We have to look if the file can be played
// by the Sound Server
std::string file =

((CPlayMsg*)message)->getFile();
if(archivo.empty())

return Sound::CServer::GetPtrSingleton()
->HasEfect(_filename);

else
return Sound::CServer::GetPtrSingleton()

->HasEfect(file);
}
return false;

}
} // namespace OIM

Code Block 16: Code of the CSoundComponent.cpp file

Bibliography

Atkin, M. S., King, G. W., Westbrook, D. L., Heeringa, B. and Cohen, P. R.
Hierarchical agent control: a framework for defining agent behavior. Fifth international
conference on Autonomous agents, Montreal, Canada, 2001.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. and Patel-
Schneider, P. F., editors. The Description Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge University Press, New York, NY, USA, 2003.
ISBN 0-521-78176-0.

Borovikov, I. and Kadukin, A. AI Game Programming Wisdom 4 , chapter Building a
Behavior Editor for Abstract State Machines. Steve Rabin, 2008. ISBN 1-584-50523-0.

Buchanan, W. Game Programming Gems 5 , chapter A Generic Component Library.
Charles River Media, 2005. ISBN 1-584-50352-1.

Cavazza, M., Charles, F. and J.Mead, S. Agents’ interaction in virtual storytelling.
Intelligent Virtual Agents (IVA), Madrid, Spain, 2001.

Cavazza, M., Charles, F. and J.Mead, S. Character-based interactive storytelling.
IEEE Intelligent Systems, Volume 17 , 2002a.

Cavazza, M., Charles, F. and J.Mead, S. Emergent situations in interactive story-
telling. Symposium on Applied Computing (SAC), Madrid, Spain, 2002b.

Cutumisu, M., McNaughton, M., Szafron, B., Roy, T., Onuczko, C., Schaef-
fer, J. and Carbonaro, M. A demonstration of the scriptease approach to ambient
and perceptive npc behaviors in computer role-playing games. Intelligent Technologies
for Interactive Entertainment, First International Conference (INTETAIN), Madonna
di Campiglio, Italy , 2005.

Cutumisu, M., Szafron, D., Waugh, J. S. D., Onuczko, C., Siegel, J. and Schu-
macher, A. Scriptease - motivational behaviors for interactive characters in computer
role-playing games. Conference on Artificial Intelligence and the Eighteenth Innova-
tive Applications of Artificial Intelligence Conference (AAAI), Boston, Massachusetts,
USA, 2006.

85

86 Bibliography

Diller, D. E., Ferguson, W., M.Leung, A., Benyo, B. and Foley, D. Behavior
modeling in commercial games. Behavior Representation in Modeling and Simulation
(BRIMS), 2004.

Dybsand, E. AI Game Programming Wisdom, chapter A Finite-State Machine Class.
Charles River Media, 2002. ISBN 1-584-50077-8.

Fu, D., Houlette, R., Jensen, R. and Bascara, O. A visual, object-oriented ap-
proach to simulation behavior authoring. Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC), 2003.

Garcés, S. AI Game Programming Wisdom III , chapter Flexible Object-Composition
Architecture. Charles River Media, 2006. ISBN 1-584-50457-9.

Goman, B., Thurau, C., Bauckhage, C. and Humphrys, M. Bayesian imitation of
human behavior in interactive computer games. International Conference on Pattern
Recognition (Christian Thurau), Hong Kong, China, 2006.

Gómez-Martín, M. A. Arquitectura y metodología para el desarrollo de sistemas edu-
cativos basados en videojuegos. Phd, Universidad Complutense de Madrid, 2008.

Grimaldo, F., Lozano, M., Barber, F. and Vigueras, G. Simulating socially
intelligent agents in semantic virtual. The Knowledge Engineering Review, Volume
23 , 2008.

Harel, D. Statecharts: A visual formulation for complex systems. Science of Computer
Programming , 1987.

Houlette, R. and Fu, D. AI Game Programming Wisdom II , chapter The Ultimate
Guide to FSMs in Games. Charles River Media, 2004. ISBN 1-584-50289-4.

Imbert, R. and de Antonio, A. An emotional architecture for virtual characters.
International Conference on Virtual Storytelling, ICVS 2005, Strasbourg, France, 2005.

Isla, D. Handling complexity in the Halo 2 ai. In Game Developers Conference. 2005.

Isla, D. Halo 3 - building a better battle. In Game Developers Conference. 2008.

Kelly, J.-P., Botea, A. and Koenig, S. Offline planning with hierarchical task
networks in video games. Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE), Stanford, California, USA, 2008.

Lakos, J. Large Scale C++ Software Design. Addison Wesley, 1996. ISBN 0-201-63362-
0.

Llansó, D., Gómez-Martín, M. A. and González-Calero, P. A. Self-validated
behaviour trees through reflective components. Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE), Stanford, California, USA, in press, 2009.

Bibliography 87

Mateas, M. and Sengers, P. Introduction to the narrative intelligence symposium.
AAAI Fall Symposium on Narrative Intelligence, 1999.

McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., Redford, J. and
Parker, D. Scriptease: Generating scripting code for computer role-playing games.
In ASE , pages 386–387. 2004.

Muñóz Ávila, H., H. y Hoang. AI Game Programming Wisdom III , chapter Coordi-
nating Teams of Bots with Hierarchical Task Network Planning. Charles River Media,
2006. ISBN 1-584-50457-9.

Nakano, A., Tanaka, A. and Hoshino, J. Imitating the behavior of human players
in action games. Entertainment Computing (ICEC), Cambridge, UK , 2006.

Ontañón, S., Mishra, K., Sugandh, N. and Ram, A. Case-based planning and
execution for real-time strategy games. ICCBR Belfast, Northern Ireland, UK , 2007.

O.Riedl, M. and Stern, A. Believable agents and intelligent story adaptation for
interactive storytelling. 3rd International Conference on Technologies for Interactive
Digital Storytelling and Entertainment, Darmstadt, DE., 2006.

Peinado, F., Cavazza, M. and Pizzi, D. Revisiting character-based affective sto-
rytelling under a narrative bdi framework. International Conference on Interactive
Digital Storytelling (ICIDS), Erfurt, Germany , 2008.

Pizzi, D., Cavazza, M. and Lugrin, J.-L. Extending character-based storytelling with
awareness and feelings. International Conference on Autonomous Agents, Honolulu,
Hawaii , 2007.

Priesterjahn, S. Imitation- based evolution of artificial game players. Genetic and
Evolutionary Computation Conference, GECCO, Atlanta, GA, USA, 2008.

Priesterjahn, S., Kramer, O., Weimer, A. and Goebels, A. Evolution of human-
competitive agents in modern computer games. IEEE Congress on Evolutionary Com-
putation (CEC’06), 2006.

Priesterjahn, S., Weimer, A. and Eberling, M. Real-time imitation-based adap-
tation of gaming behaviour in modern computer games. Genetic and Evolutionary
Computation Conference, GECCO, Atlanta, GA, USA, 2008.

Rene, B. Game Programming Gems 5 , chapter Component Based Object Management.
Charles River Media, 2005. ISBN 1-584-50352-1.

Richards, R. A., Houlette, R. T. and Mohammed, J. L. Distributed satellite
constellation planning and scheduling. Florida Artificial Intelligence Research Society
Conference (FLAIRS), Key West, Florida, USA, 2001.

Rosado, G. AI Game Programming Wisdom II , chapter Implementing a Data-Driven
Finite-State Machine. Charles River Media, 2004. ISBN 1-584-50289-4.

88 Bibliography

Sánchez-Ruiz, A. A., González-Calero, P. A. and Díaz-Agudo, B. Abstrac-
tion in Knowledge-Rich Models for Case-Based Planning. In Proc. of International
Conference on Case-Based Reasoning . 2009.

Sánchez-Ruiz, A. A., Llansó, D., Gómez-Martín, M. A. and González-Calero,
P. A. Authoring behaviour for characters in games reusing abstracted plan traces.
International Conference on Intelligent Virtual Agents (IVA), Amsterdam, Holland,
in press, 2009a.

Sánchez-Ruiz, A. A., Llansó, D., Gómez-Martín, M. A. and González-Calero,
P. A. Authoring behaviours for game characters reusing automatically generated
abstract cases. Workshop on Case-Based Reasoning for Computer Games(CBRCG),
Seattle, Washington, USA, in press, 2009b.

Spinola, J., Imbert, R., Medinilla, N., de Antonio, A. and Gudwin, R. Una
capa social para cognitiva: interacción cooperativa entre agentes en entornos virtuales.
II Jornadas sobre Realidad Virtual y Entornos Vituales - JOREVIR, Albacete, España,
2008.

Szilas, M. Becool: Toward an author friendly behaviour engine. 4th International
Conference on Virtual Storytelling (ICVS), Saint-Malo, France, 2007.

Valve Software. Half life. 1998.

Virmani, S., Kanetkar, Y., Mehta, M., Ontañón, S. and Ram, A. An intelligent
ide for behavior authoring in real-time strategy games. Artificial Intelligence and In-
teractive Digital Entertainment Conference (AIIDE), Stanford, California, USA, 2008.

W3C Consortium. OWL web ontology language guide. W3C recommendation.
http://www.w3.org/tr/owl-guide/. 2004.

West, M. Evolve your hiearchy. Game Developer , vol. 13(3), pages 51–54, 2006.

Autorización

El abajo firmante, matriculado en el Máster en Investigación en Informática de la Facul-
tad de Informática, autoriza a la Universidad Complutense de Madrid (UCM) a difundir
y utilizar con fines académicos, no comerciales y mencionando expresamente a su autor
el presente Trabajo Fin de Máster: “Reflective Components for Designing Behaviour in
Video Games”, realizado durante el curso académico 2008-2009 bajo la dirección de Pedro
Antonio González Calero y Marco Antonio Gómez Martín en el Departamento de Inge-
niería del Software e Inteligencia Artificial, y a la Biblioteca de la UCM a depositarlo en
el Archivo Institucional E-Prints Complutense con el objeto de incrementar la difusión,
uso e impacto del trabajo en Internet y garantizar su preservación y acceso a largo plazo.

Fdo: David Llansó García.
Madrid a 22 de Junio de 2009.

89

	Página de Título
	Índices
	Tabla de contenidos
	Índice de figuras

	Introduction
	Motivation
	Behaviour Trees
	Component-Based Approach
	The Proposal: Reflective Components

	State of the Art
	Introduction
	Authoring Tools in Different Fields

	Components
	Traditional Object-Management Systems
	The Component-Based Approach
	The blueprints File
	The archetypes File
	Messages

	A Basic Implementation

	Behaviour Trees
	From Finite State Machines to Behaviour Trees
	Composite Nodes of Behaviour Trees
	Behaviour Tree Executer

	Reflective Components
	Gathering Information
	A Reflective Component-Based System Develop Methodology

	Self-Validated Behaviour Trees through Reflective Components
	Failures in Behaviour Trees caused by Intrinsic Nature of the Entity
	Implementation of Extended Reflective Components and Entity
	Coarse-Grained Approach
	A Fine-Grained Approach

	Implementation of Extended Behaviour Trees
	Example
	Different Uses
	During the Design Time
	During the Execution of the Game

	Generating New Behaviours by Means of Abstracted Plan Traces
	Planning with Ontologies to Support the Behaviour Tree Creation
	Generating the Planning Domain by Using Reflective Components
	Implementation
	Different Uses
	During the Design Time
	During the Execution of The Game

	Conclusions
	Javy 2 code
	Messages
	Component

	Bibliography

