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Abstract. Real-time strategy (RTS) gameplay can be divided into macromanagement and 
micromanagement. Other researches have employed Case-based reasoning (CBR) and case-
based planning in real-time strategy games that have beaten static scripted computer opponents. 
Unlike much of the previous work where CBR and case-based planning is used to improve the 
macromanagement in RTS games, we present a CBR system that can be used to improve the 
micromanagement quality in RTS games. We explore various ways of case representations as 
well as case adaptation mechanisms suited for a micromanagement environment. By managing 
to beat a hard-coded computer opponent we conclude that our approach can be used to aid 
human players against computer opponents and increase the quality of the micromanagement of 
a computer player. Our experiments have been conducted within the Warcraft 3 gaming 
environment. 
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1 Introduction 

The computer player performance in the popular real-time strategy (RTS) game genre 
has always been poor. Although AI techniques have successfully been applied in 
other related game genres like classic board games, the computer players in RTS 
games (often commonly referred to as game AI) are still lagging behind and can 
easily be defeated by amateurs [4]. Unlike games like chess where each player waits 
until the opponent makes his move, game flow in RTS games is simultaneous and 
continuous. Players usually compete within areas of resource gathering, structure 
building and army management, watching hundreds or even thousands of interacting 
objects from a top-down perspective. Due to the genre’s nature, the game AI has to 
make decisions in real-time in an inaccessible, non-deterministic, dynamic and 
continuous environment with vast search spaces. Here traditional search methods no 
longer apply [4, 6, 8].  

RTS gameplay can further be divided into macromanagement and 
micromanagement. Micromanagement is the way a player manages his units during 
combat or resource gathering. In the RTS game context a unit is a single character, 
often a worker or a solider, that can have several associated attributes like attack type, 
armor type or movement speed. In contrast to macromanagement, which focuses on 
overall game strategies involving a player’s army (where to move, when to attack or 
whether to flee), micromanagement describes all the small details that involve the 
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individual units themselves (movement, enemy unit targeting, spell casting etc.). The 
macromanagement has been addressed by many studies of CBR in relation to RTS 
games [5, 6, 7]. However, very little has been done in relation to micromanagement 
which is usually just handled by the game itself.  

In the study presented here a case-based reasoning system has been 
implemented in the game Warcraft 3. The system focuses on the micromanagement of 
units during battles. Specifically, we are interested in how case-based reasoning can 
improve the quality of micromanagement in a real-time strategy game. We study how 
to beat the already implemented game AI in Warcraft 3 as well as how a CBR system 
can be used to aid human players. To avoid confusion, the already implemented game 
AI in Warcraft 3 will be referred to as “computer opponent” while our implemented 
CBR system will be referred to as “CBR player”.  

The rest of this paper is structured as follows: Chapter 2 gives a brief 
introduction to micromanagement in Warcraft 3. In Chapter 3, 4, 5 and 6 we present 
our implemented CBR system, with the results presented in Chapter 7. Chapter 8 
continues with a discussion of the results. Finally Chapter 9 summarizes and provides 
conclusions about the project. 

2 Background 

Warcraft 3: Reign of Chaos is an RTS computer game released by Blizzard 
Entertainment in July 2002. Despite its age, Warcraft 3 is still a popular game. This 
makes it easy to find suitable human testers for systems implemented in its game 
environment.  

During typical “melee” gameplay each player starts with a main building and 
five workers. By gathering resources new buildings can be constructed and the player 
gains access to new units, technologies and structures (Figure 1). By specific build 
strategies and unit control in battle each player tries to get the upper hand to win the 
game by eventually destroying all opponents [2].  

Before choosing Warcraft 3 as our game environment we also considered 
using the Wargus/Stratagus environment [10], an open source clone of the game 
Warcraft 2 (older version of Warcraft 3), and ORTS [11], an open source 
programming environment for RTS games. Wargus has been successfully used in 
other studies that show how a CBR approach can beat scripted computer opponents 
[6]. However, those environments are focusing mostly on other aspects of RTS games 
than micromanagement in battle [9]. Wargus is mostly designed for 
macromanagement while ORTS is focusing more on low level tasks like pathfinding, 
formations and resource gathering.  

Environments like Wargus are not suitable micromanagement environments 
for human players. Compared to Warcraft 3, units in Wargus die quickly and the 
interface does not give a good overview of their status. Under such conditions, a 
human player has problems to react in time and can not micromanage efficiently. The 
other problem is the lack of unit healing in Wargus. The number of units a player can 
build is limited in RTS games. This makes wounded units a problem in Wargus 
because they take up spots for healthy units that can be trained. A lot of 
micromanagement is about keeping units alive. If you have a player with very bad 
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Fig. 1. A screenshot from Warcraft 3. 

micromanagement battling a player with a very good micromanagement, the player 
with good micromanagement might win the whole battle without loosing a single unit. 
In Warcraft 3, keeping units alive is important because players can heal wounded 
units at much cheaper cost than by replacing dead units with newly trained ones [3]. 
This makes good micromanagement in Warcraft 3 very beneficial. Warcraft 3 suffers 
however from limitations caused by not being open source. Everything must be 
created by tools offered by Warcraft 3 meaning that the whole CBR system must be 
created from scratch. Luckily, Warcraft 3 has an internal scripting language [13] that 
makes this possible.  

Since open source, both Wargus and ORTS can be converted to a suitable 
micromanagement environment for our needs. The problem is the amount of work 
needed to do so. Because our study was limited in time, we could not afford such an 
approach. The other reason we chose Warcraft 3, despite its limitations, is that it is 
very well suited as a micromanagement environment. Micromanagement in Warcraft 
3 is of key importance and thus a very important aspect of the game. Moreover, the 
already implemented micromanagement in Warcraft 3 has room for improvement. 
Winning against the computer opponent in Warcraft 3 is fairly easy especially if its 
micromanagement behaviors are exploited. One example of this is that the computer 
opponent focuses on certain units with high priority. By knowing this a human player 
can keep an eye on those units ordering them to move away if necessarily. During 
battle the computer opponent will use a lot of time and effort by running after those 
units trying to kill them. The human player’s force can concentrate on the computer’s 
units and take them down one at a time. Such exploits does not contribute to the fun 
of playing a seemingly dumb opponent. To create a realistic and smart computer 
opponent in games like Warcraft 3, improving both high level strategies and 
micromanagement is necessary. 
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3 System Architecture 

When designing and implementing our system we had to keep in mind that it would 
run on an end-user’s computer inside the Warcraft 3 game (by using the tools offered 
by Warcraft 3 we created a map containing the CBR system as well as the cases). 
Therefore we wanted our CBR system to be simple with relatively few and simple 
cases.  

Since our focus is on micromanagement, our system does not run on an 
ordinary melee map but on a custom map made as an arena. The arena is surrounded 
by limiting barriers (limits both air and ground passage). The system uses the three 
first steps in the 4R CBR model [1] and can be summarized by the following 
algorithm: 
 
1. Store the current game state as a new unsolved case in memory.  
2. Compare the new case to the existing cases in memory and retrieve the most 

similar one. 
3. Adapt and execute the retrieved case. 
4. If in training mode and a problem is observed, add a new case to the system. 
5. Wait 1 second then go to 1. 
 

Figure 2 shows a more detailed diagram of the CBR system. Every second, the 
current game state is abstracted into a case and compared to previously stored and 
solved cases. The most similar case is retrieved and the solution provided by that case 
is executed. At any time during execution new cases can be added. This is typically 
done when the system is executing a wrong case or a new case is needed (this is done 
by an expert observing the system). Adding cases is simply done by entering the 
“correct” strategy that is supposed to be followed. Since the new case will be the most 
similar case to the current game state, it will be executed next time (in one second). 
For a screenshot of the CBR system see Figure 3. 

4 Case Structure and Indexing 

The game state relevant to our system consists of units battling each other in a 
battlefield area. We are not interested in a player’s resources, structures or units 
outside the battlefield. Our choice of relevant attributes that were added to the case 
descriptions describing the game state were “unit type”, unit remaining “hit points” 
(determines the amount of damage a unit can withstand), unit remaining “mana 
points” (mana in Warcraft 3 is “magical energy” that some units can use to cast 
spells) and “unit position” relative to the battlefield (x and y coordinate). The 
battlefield in our system is a square shaped region where the battle takes place. 
Everything outside that region is not relevant and thus not included in the case 
description of the game state.  

Our case structure is a simplified version of the proposed structure by Cheng 
et al. [5] and consists of three parts: 
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Fig. 2. Overview of the CBR system.  

 
1. Condition Part (primary indexing) 
2. Description Part (attribute values when the case was recorded) 
3. Solution Part (strategy and unit behaviors) 

 
The condition part of a case consists of a set of conditions that have to be 

fulfilled to be able to execute the solution part of the case. This is also the primary 
indexing part of our cases, i.e. only cases where the condition parts can be fulfilled 
are compared to the current game state. If the solution part of a case has an action that 
orders a unit to cast a certain spell, the condition part needs to check whether such a 
unit exists on the battlefield and if it exists, whether it has enough mana points to cast 
the spell. The description part of a case simply describes the situation when the case 
was learned. It consists of two arrays, one for each player, which stores our chosen 
attributes (unit type, remaining hit points, remaining mana points and position). Even 
though Warcraft 3 allows twelve players to battle each other on one map, we limited 
our system to two players.  

When a case that is most similar to the current game state is retrieved and its 
conditional part can be fulfilled, the solution part can be executed. The solution part 
consists of a strategy that contains actions and behaviors. Actions are simply 
individual unit orders like attacking an enemy unit, moving to a specific point, healing 
a friendly unit or using an item from inventory. Behaviors are used to both decrease 
system reaction time (currently 1 second) and the number of cases. A behavior is a set 
of actions that trigger when some condition or conditions are met.  
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Fig. 3. A screenshot from the CBR system during training. Left: similarity trace generated by 
comparing the a new unsolved case to existing solved cases. Upper right: helping tool used by 

the expert during training. Lower right: overview over learned cases. 

Something important might happen that requires a fast response between the 
1-second intervals our CBR system currently uses. By using behaviors it is possible to 
react quickly by setting the important happening as a condition. An example of a 
behavior of a unit might be to retreat when getting low on health or cast a spell when 
having enough mana points. Using behaviors can also potentially decrease the number 
of cases needed. For example if a player has ten different units in his or her army and 
wants to retreat with a unit once it gets low on hit points, at least ten cases must be 
learned (one for each unit when its hit points are at a certain low value). By setting an 
escape behavior on the units involved, only one case would be needed. To make 
things convenient, mutually exclusive behaviors can be set simultaneously. For 
example, a unit can have a behavior that triggers differently depending on what type 
of attribute has changed. 

5 Similarity Metric 

Our case retrieval process uses a weighted nearest neighbor algorithm. It is a similar 
algorithm that Ontañón et al. use in their project [7], except for two differences. Our 
approach does not use goals (therefore the part of the equation matching goals is not 
included), and adds a weight to each attribute. The similarity metric is as follows: 
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 d(c1, c2) = dGS(c1.U, c2.U)     (1) 
 
Here c1 and c2 are the compared cases while c1.U and c2.U are the sets of units 
contained in those cases. dGS( ) is a Euclidean distance between game states 
(between units). To measure distance between two units the following distance is 
used: 
               ___________________ 
 dGS(u1, u2) = √ Σ ((pi - qi)/Pi)^2 * Wi if same unit type (2.1) 
               ________ 
 dGS(u1, u2) = √ Σ 1 * Wi   otherwise (2.2) 
 
u1 and u2 are the units compared. Pi is the maximum value of the attribute i (pi and qi 
are the values of attribute i belonging to the compared units) while Wi is the weight of 
attribute i. When units are different, the distances between their corresponding 
attributes is set to 1. 

This metric favors cases with equal amount of units. The similarity metric 
can have a value between 0 and 2√n assuming the weights are set to 1. Here n is the 
maximum number of units contained in either the compared case or the current game 
state. n usually has values between 4 and 40, which is the amount of units involved in 
a typical Warcraft 3 battle. Similarity values of 2√n can be obtained by comparing 
two totally different cases, where n is the number of units in the largest case (the case 
describing most units). During case retrieval all executable cases are compared, by 
use of the described metric, with the current game state, and the most similar case (the 
case with the smallest d(c1, c2) value) is chosen. If no case is found, the units just 
follow their old orders from the last case executed. 

6 Case Matching 

The case matching process starts by retrieving the subset of cases from the case base 
which fulfill the condition part of the new case. This requires a 100% match and 
increases the performance of the system as well as prevents selection of cases that can 
not be executed. The similarity assessment is then executed among these cases based 
on the similarity of the description part of the cases (hit points, mana points, unit type 
and position).  

We implemented four different case matching methods, as detailed by 
Szczepański [12]: 

 
1. Unit sorting. Units are constantly sorted by remaining hit points. The 

existing cases are also sorted in the same way. During matching the first unit 
in the new case is matched with the first unit in an old case etc. 

2. Unit similarity. Most similar units matched together, same metric as 
described in Section 3.3. The existing cases are not sorted. 

3. Commitment. Units are numerated before battle, numeration does not 
change. During matching equally numerated units are compared. 

4. Unit sorting with enemy in reverse order. Similar approach as 1. Differs by 
sorting of enemy units (sorted inversely). 
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Approach 1 and 4 are motivated by one of the most important principles of 
micromanagement: killing one unit at the time reduces the DPS (damage per second) 
of the enemy army faster that killing several units at the time (it is assumed that 
killing N units at the time takes N times longer than killing one unit). This is because 
in Warcraft 3 a unit deals the same amount of damage regardless of its remaining hit 
points unless it is dead. Approach 2 tried to find the most similar units in the current 
new case (current game state) and the retrieved case when applying strategies and 
behaviors. The 3rd approach was the simplest possible. Units were enumerated before 
battle and the enumeration did not change.  

The presorting of units in cases can be viewed as a type of case adaptation 
because this sorting could also have been done after case matching in order to fit the 
solution of a past case to the current problem. By doing it beforehand efficiency 
effects are gained. In that sense our system can be viewed as performing case 
adaptation by enumerating the units on the battlefield in such a way that when the 
solution part of the retrieved case is executed, the outcome will be similar to the 
expected/intended outcome observed when the retrieved case was learned. 

Each matching approach was tested in a very simple setting of two teams of 
5 units battling each other. On that basis approach 4 was selected because it was the 
approach that needed the least amount of cases to beat a computer opponent. 
Currently, the system sorts units by their remaining hit points both when considering 
the current game state, and when considering/comparing to the case description parts. 
Enemy units are sorted such that the first unit has the least remaining hit points while 
the CBR system’s units are sorted in the opposite way (the first unit has the most 
remaining hit points). This makes the cases reusable (attacking units with lowest 
remaining hit points is most often the correct/optimal play). 

7 Testing 

Having our limited case representation in mind (no information about terrain etc.) and 
that our CBR system focuses purely on micromanagement, we isolated the testing 
battlefield to a perfectly flat rectangular area. The battlefield, shown in Figure 3, 
contains two armies (controlled by the CBR player and the computer opponent) 
fighting each other in a mirror battle (both battling armies consist of the same units 
with the same attribute values). 

The main purpose of the tests was to compare the performance of our CBR 
system against human players to the performance of the computer opponent in 
Warcraft 3 in the same setting. The testing was divided into four parts. We started by 
training the CBR system against a computer player. We then tested the trained system 
against the computer player without training. Next, both the CBR system and the 
computer player were tested against human opponents. Finally, to test the 
applicability of the CBR system as an aiding tool, both human players and the CBR 
system were tested in a cooperative mode against the computer player. A test 
proceeded as long as there were units on the battlefield belonging to different players.
 The tests involving human players were divided into three categories: novice, 
casual and expert players. A player would be considered novice if he had some minor 
RTS experience while expert would be a person able to easily beat an “insane” 
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computer opponent (the hardest difficulty of a computer opponent in Warcraft 3). We 
had 10 persons for the tests. Those were students (the novice players) and people from 
the Warcraft 3 gaming community (the casual and expert players). 

The CBR player was trained by playing repeatedly against a computer 
opponent. Whenever the system did execute a wrong case (due to lack of a better 
alternative or a similar case) an expert paused the game and added a new case. After 
learning 25 cases, our system was able to beat the game AI in Warcraft 3 (this process 
is summarized in Table 1). After some tweaking and testing of the weight variable 
during the training, we did not observe any increase in quality of the retrieval process 
of the CBR system. Thus, we decided to keep the weights constant end equal to 1. A 
screenshot from the training of the CBR system is shown in Figure 3. 

 
Training 

step 
Cases 
added 

Units lost during test by 
CBR system 

Computer units killed 
during test 

1 7 All 7 
2 6 All 11 
3 5 All 6 
4 3 All 7 
5 3 All 7 
6 1 5 All 

Table 1. Testing resuslts during training. 

When finished with the training, we tested the trained CBR player against the 
insane computer opponent. The CBR player won all of the 10 games by an average 
loss of 2.5 units out of 14 per game. Next, we performed tests where human players 
played against a computer opponent. The feedback received from novice players was 
that the micromanagement provided by the insane computer opponent was simply too 
hard to beat. Similar feedback was received from the casual players. The expert 
players on the other hand complained that the insane computer opponent was too easy 
to beat (the expert players managed many times to beat the computer opponent 
without loosing a single unit). The same response was received when human testers 
played against the CBR player. The major difference was that the expert players 
needed some games to figure out how to beat the CBR system. They did not manage 
to beat the CBR player without loosing only a few units. Finally players played with 
the CBR player on their side such that the CBR player was given the control of all 
unselected units. The purpose of this test was to see whether or not the CBR player 
could aid human players in battle. Because stored cases can contain solutions with a 
lot of dependencies, it was interesting to see if the interaction by human players 
would sabotage those solutions. Interestingly, all groups of players managed to beat 
the insane computer opponent. The dependency observed was that the novice and 
casual players did better in this setting than the experienced players. The experienced 
players found this setting very disturbing because the CBR player was destroying 
their executed strategies. One example of this was when an expert ordered a near-
death unit to retreat while a couple of seconds later the CBR player brought it back 
into battle. The novice and the casual players liked this setting because they could 
relax and focus only on their heroes instead of the whole army. 
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8  Discussion 

Our approach managed to create a working system that was capable of beating both 
computer and novice/casual human players. The system also added more challenge to 
the micromanagement for experienced players. Having the CBR system on their side, 
novice and casual players were able to easily beat the insane computer opponent. By 
using a setup that gives a novice or casual player aid from a CBR player, while 
putting the CBR player against expert players, one should be able to increase the 
entertainment value of a played RTS game. However it is also important to note that 
since our number of human testers was low, the results are a mere indication of what 
to expect from our CBR system in the future. 

Though working, the CBR system also has some weaknesses that were 
encountered during the training in Chapter 4. During the development phase the unit 
setup was rather simple and the five attributes used (unit type, hit points left, mana 
points left, x position and y position) sufficed. Those attributes do not give any 
information about the past history of what the various units have been doing for the 
last few seconds. This means that our CBR system does not distinguish between a 
very active, moving unit and a passive, stationary unit. The system will continue to 
attack a unit independent on whether or not the attacked unit has been moving around 
in circles, avoiding most of the attacks. We also observed that our similarity metric 
was inefficient in many situations. This was because we compared the position x and 
position y attributes directly instead of looking at the configuration and patterns of 
units on the battlefield. Using unit positions directly without abstracting it into more 
complex structures like unit formations, causes bade case reuse. 

We also encountered a problem with unnecessary and unintended unit 
movement. Unit behaviors and actions are defined by the position in the unit list 
sorted by the attribute “remaining hit points”. When units swap places in this list, they 
also get new corresponding actions assigned. Repositioning is needed when such units 
are far from each other. If such units swap a lot, most of the game time will be used 
for moving units back and forth resulting in huge damage loss. To avoid this problem 
to appear, an expert needs to foresee this and adjust the strategy such that swaps in the 
unit list sorted by the attribute “remaining hit points” occur as seldom as possible. 

9 Conclusion 

The work presented in this paper shows how a CBR system focusing on 
micromanagement for the RTS game Warcraft 3 can outperform the original game AI 
in addition to novice and casual human players. Even though we encountered some 
problems during testing against human players, our approach looks promising.  

There are several ways our system can be improved. To prevent unit chasing 
and inefficient case choosing, our case representation can be extended to include 
information about both opponent playing style and unit activity attributes. To avoid 
classifying units that run small distances back and forth as very active units, it is 
important to not only consider the total distance traveled but also the effective change 
in position during a time interval. An increased reusability of cases might be obtained 
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by comparing unit position attributes as patterns and not directly. Better/new case 
adaptation approach is also needed to reduce unnecessary unit movement. One 
solution could be to have a dynamic case adaptation that sorts by remaining hit points 
when the unit count is low, but changes to some more suited case adaptation approach 
when the number of units increases. Complex actions/behaviors that need longer time 
to complete are not supported by our approach. Combining macromanagement with 
micromanagement might be one way to solve this. Another opportunity is to convert 
our approach into a case-based planning system. 
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