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Abstract

By analyzing play history, it is possible to gain critical in-
sights about future plays. Plays are sequences of actions to
be undertaken by a collection of agents, or teammates. The
success of a play depends on a number of factors including,
perhaps most importantly, the opponent’s play. In this paper,
we present an approach for online opponent modeling and il-
lustrate how it can be used to improve offensive performance
in the Rush 2008 football simulator. In football, team behav-
iors have an observable spatio-temporal structure, defined by
the relative physical positions of team members over time.
We demonstrate that this structure can be exploited to recog-
nize football plays at a very early stage of the play using a
supervised learning method. Using the recognized defensive
play, knowledge about expected outcomes, and spatial simi-
larity between offensive plays, we retrieve an offensive play
from case base. This play is then reused to improve an in
progress offensive play. We call this process a play switch.
Empirical results indicate that spatial similarity is central to
play retrieval, and that, modifying only a subset of the current
play with the retrieved play yields greater improvement.

Introduction
To succeed at American Football, a team must be able to
successfully execute closely-coordinated physical behavior.
Teams rely upon a pre-existing sets of offensive and defen-
sive plays, or playbooks, to achieve this coordinated behav-
ior. By analyzing play history, it is possible to glean critical
insights about future plays. In American Football, quarter-
backs frequently call audibles, changes of play based on an
assessment of the opponent’s play. This task involves iden-
tifying the opponent’s play and then selecting a new play for
the offensive team.

In physical domains (military or athletic), team behav-
iors often have an observable spatio-temporal structure, de-
fined by the relative physical positions of team members.
This structure can be exploited to perform behavior recog-
nition on traces of agent activity over time. This paper
describes a method for recognizing defensive plays from
spatio-temporal traces of player movement in the Rush 2008
Football Simulator (Figure 1). Rush 2008 simulates a mod-
ified version of American Football and was developed from
the open source Rush 2005 game (Rush 2005), which is sim-
ilar in spirit to Tecmo Bowl and NFL Blitz.

Figure 1: Screenshot of the Rush 2008 football simulator.

Using knowledge of play histories, we present a method
for executing a play switch based on the potential of other
plays to improve the yardage gained and their similarity to
the current play. From a case based reasoning perspective
(Aamodt and Plaza 1994), this involves retrieving a superior
play and adapting it to the current situation. In retrieving
a superior play, we show that calculating the relative simi-
larity of the current play compared with the candidate play
improves performance. By limiting the play switch to a sub-
group of players, we can improve on the total team switch.

We begin by describing the Rush Football simulator. Next
we describe our play switching approach with a detailed dis-
cussion of opposing play recognition, play similarity, and
play adaptation. We outline the system which implements
these ideas and present an empirical evaluation. We close
with related and future work.

Rush Football
Football is a contest of two teams played on a rectangular
field that is bordered on lengthwise sides by an end zone.
Unlike American Football, Rush teams only have 8 players
on the field at a time out of a roster of 18 players. The field
is 100 yards by 63 yards. The game’s objective is to out-
score the opponent, where the offense (i.e., the team with
possession of the ball), attempts to advance the ball from the



line of scrimmage into their opponent’s end zone. Therefore,
an offensive play’s success can be measured by the amount
of yardage gain.

The offensive lineup contains the following positions:

Quarterback (QB): given the ball at the start of each play,
and will initiate either a run or a pass.

Running back (RB): begins in the backfield, behind the
line of scrimmage where the ball is placed, with the quar-
terback and fullback. The running back is eligible to re-
ceive a handoff, pitch or pass from the quarterback.

Full back (FB): serves largely the same function as the
running back.

Wide receiver (WR): executes passing routes and is the
primary receiver for pass plays. The wide receiver ini-
tially starts near the line of scrimmage but on the far right
or far left of the field.

Tight end (TE): begins on the line of scrimmage immedi-
ately to the outside of the offensive lineman and can re-
ceive passes.

Offensive lineman (OL): starts on the line of scrimmage
and is primarily responsible for preventing the defense
from reaching the ball carrier.

A Rush play is composed of (1) a starting formation and
(2) instructions for each player in that formation. A forma-
tion is a set of (x,y) offsets from the center of the line of
scrimmage. By default, instructions for each player consist
of (a) an offset/destination point on the field to run to, and (b)
a behavior to execute when they get there. Play instructions
are similar to a conditional plan and include choice points
where the players can make individual decisions as well as
pre-defined behaviors that the player executes to the best of
their physical capability. Rush includes three offensive for-
mations (power, pro, and split) and four defensive ones (23,
31, 2222, 2231). Each formation has eight different plays
(numbered 1-8) that can be executed from that formation.
Offensive plays typically include a handoff to the running
back/fullback or a pass executed by the quarterback to one
of the receivers, along with instructions for a running pattern
to be followed by all the receivers. An example play is given
below:

• the quarterback will pass to an open receiver;

• the running back and fullback will run hook routes;

• the left wide receiver will run a corner right route;

• the right wide receiver will run a hook route;

• the other players will block for the ball holder.

Offensive Play Switches
In American Football, the quarterback changes the play
based on the defensive formation and their reactions to of-
fensive actions before the beginning of the play. Although
Rush does not allow for actions before the play, the Rush
simulator allows us to alter the play shortly after it has be-
gun, providing an analogous task.

Figure 2: Play-switching approach.

Our approach focuses on two aspects of case-based rea-
soning, retrieval and reuse (Aamodt and Plaza 1994). At
this early stage, we are not concerned with the revision or re-
tention of play-switching episodes for future use. Our play
switch approach is summarized in Figure 2. Play retrieval
requires quickly recognizing the opponent’s play, predicting
the results of different offensive plays against it, and com-
paring them to the current situation. This retrieved play is
reused by giving new actions to players in the current situ-
ation. Our case base consists of the 8 plays for each of the
three offensive formations.

The system’s background knowledge includes 50 in-
stances of every offensive and defensive play combination.
These instances are used to train the recognition system,
generate an expected yardage table for every combination of
plays, and compute similarity between the offensive plays.
The next sections describe the play recognition and similar-
ity metric used in retrieval, followed by a discussion of how
the retrieved play is adapted for the current situation.

Play Recognition using SVMs

Given a series of observations, our goal is to recognize the
defensive play as quickly as possible in order to maximize
our team’s ability to intelligently respond with the best of-
fense. Thus, the observation sequence grows with time un-
like in standard offline activity recognition where the entire
set of observations is available. We approach the problem
by training a series of multi-class discriminative classifiers,
each of which is designed to handle observation sequences
of a particular length. In general, we expect that the early
classifiers will be less accurate since they are operating with
a shorter observation vector and because the positions of the
players have deviated little from the initial formation.

We perform this classification using support vector ma-
chines (Vapnik 1998). Support vector machines (SVM) are
a supervised algorithm that can be used to learn a binary
classifier; they have been demonstrated to perform well on a
variety of pattern classification tasks, particularly when the
dimensionality of the data is high (as in our case). Intu-
itively an SVM projects data points into a higher dimen-
sional space, specified by a kernel function, and computes
a maximum-margin hyperplane decision surface that sepa-



rates the two classes. Support vectors are those data points
that lie closest to this decision surface; if these data points
were removed from the training data, the decision surface
would change. More formally, given a labeled training set
{(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ <N is a fea-
ture vector and yi ∈ {−1,+1} is its binary class label, an
SVM requires solving the following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

constrained by:

yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

The function φ(.) that maps data points into the higher di-
mensional space is not explicitly represented; rather, a ker-
nel function, K(xi,xj) ≡ φ(xi)φ(xj), is used to implicitly
specify this mapping. In our application, we use the popular
radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Several extensions have been proposed to enable SVMs
to operate on multi-class problems (with k rather than 2
classes), such as one-vs-all, one-vs-one, and error-correcting
output codes. We employ a standard one-vs-one voting
scheme where all pairwise binary classifiers, k(k − 1)/2 =
28 for every multi-class problem in our case, are trained
and the most popular class is selected. Many efficient im-
plementations of SVMs are publicly available; we use LIB-
SVM (Chang and Lin 2001).

We train our classifiers using a collection of simulated
games in Rush collected under controlled conditions: 40
instances of every possible combination of offense (8) and
defense plays (8), from each of the 12 starting formation
configurations. Since the starting configuration is known,
each series of SVMs is only trained with data that could
be observed starting from its given configuration. For each
configuration, we create a series of training sequences that
accumulates spatio-temporal traces from t = 0 up to t ∈
{2, . . . , 10} time steps. A multiclass SVM (i.e., a collection
of 28 binary SVMs) is trained for each of these training se-
quence lengths. Although the aggregate number of binary
classifiers is large, each classifier only employs a small frac-
tion of the dataset and is therefore efficient (and highly par-
alellizable). Cross-validation on a training set was used to
tune the SVM parameters (C and σ) for all of the SVMs.

Classification at testing time is very fast and proceeds as
follows. We select the multiclass SVM that is relevant to the
current starting configuration and time step. An observation
vector of the correct length is generated (this can be done
incrementally during game play) and fed to the multi-class
SVM. The output of the intent recognizer is the system’s
best guess (at the current time step) about the opponent’s
choice of defensive play and can help us to select the most
appropriate offense, as discussed below.

Table 1 summarizes the experimental results for different
lengths of the observation vector (time from start of play),

Table 1: Play recognition results (all play combinations)
t = 2 3 4 6 8 10
12.50 96.88 96.87 96.84 96.89 96.81

averaging classification accuracy across all starting forma-
tion choices and defense choices. We see that at the earliest
timestep, our classification accuracy is at the baseline but
jumps sharply near perfect levels at t = 3. This strongly
confirms the feasibility of accurate intent recognition in
Rush, even during very early stages of a play. At t = 2,
there is insufficient information to discriminate between de-
fensive plays (perceptual aliasing), however by t = 3, the
positions of the defensive team are distinctive enough to be
reliably recognized. Thus, for our agent, we use t = 3 to
classify the opposing play.

Play Similarity Metric
While knowledge about the opposing play is central to re-
trieving an effective offensive play, the similarity of the can-
didate plays to the current play estimates the feasibility of
the play switch.

To calculate play similarities, we create a feature matrix
for every formation/play combinations based on background
knowledge. The 13 features for each athlete A include max,
min, mean, and median over x and y in addition to the fol-
lowing special features:

FirstToLastAngle: Angle from starting point (x0, y0), to
ending point (xn, yn), defined as atan

(
4y
4x

)
StartAngle: Angle from the starting point (x0, y0) to

(x1, y1), defined as atan
(
y1−y0
x1−x0

)
EndAngle: Angle from (xn−1, yn−1) to the ending point

(xn, yn), defined as atan
(
4y
4x

)
TotalAngle:

∑N−1
i=0 atan

(
yi+1−yi

xi+1−xi

)
TotalPathDist:

∑N
i=1

2
√

(xi − xi−1)
2 + (yi − yi−1)

2

These features are similar to the ones used in (Rubine
1991) and more recently by (Wobbrock et al. 2007) to match
pen trajectories in sketch-based recognition tasks, another
spatio-temporal task. Here, they are generalized for use with
multi-player trajectories. Feature set F for a given play c
(c = 1...8, represents possible play matches per formation)
contains all features for each offensive player in the play and
is described as:

−→
Fc = {Ac1 ∪Ac2 ∪ · · · ∪Ac8}

Using the 50 play instances from background knowledge,
we compute a similarity vector V for every combination
of offensive formation, offensive play, defensive formation,
and defensive play combination. This vector includes 8 en-
tries (the computed similarities between the offensive play
and the other plays from that formation). We define the
similarity between plays as the sum of the absolute value



Figure 3: The starting play (left) is played out, first by changing all players to the optimal play (center) and then by executing
change commands only for a subgroup of players (right). Effectively, the subgroup switch play remains close the original
play by player movements while becoming significantly more effective as indicated by the green line which represents average
yardage gained in this play.

of the differences (L1 norm) between features Fci
and Fcj

.
In the evaluation section, we compare the performance of
a similarity-based play switch mechanism vs. a play switch-
ing algorithm that focuses solely on the potential for yardage
gained.

Play Reuse
To reuse the new play in the current situation, we must adapt
the current play. The most straightforward approach in-
volves changing the entire play (i.e., each offensive player
follows the new play from this time forward). An alterna-
tive strategy involves modifying the actions of only a small
group of key players while leaving others alone. By seg-
menting the team in this fashion, we are able to combine
two plays that had previously been identified as alike with
regard to spatio-temporal data, but different in regards to
yards gained. Based on our domain knowledge of football,
we selected three subgroups as candidates to switch: {QB,
RB, FB}, {LG, C, RG}, and {LWR, RWR, RTE, LTE}.

Figure 3 displays a good example of a successful merg-
ing of two plays to produce a superior play with subgroup
switching. The green line represents the average yardage
gained. The left image is the most likely path of the baseline
case (a running play which yields little yardage on average).
The middle image is the most likely execution trace pro-
duced by the total play switch method. The play produced
by the total play switch was not much more successful than
the baseline case. However, when Group 1 {QB, RB, FB} is
modified, the yardage gained increased greatly and the new
play is shown to be very coordinated and effective.

Improving the Offense with Play Switches
To improve offensive performance, our agent evaluates the
competitive advantage of executing a play switch based on
1) the potential of other plays to improve the yardage gained
and 2) the similarity of the candidate plays to the current
play. Our algorithm for improving Rush offensive play has
two main phases: a preprocess stage, which yields a play

switch lookup table, and an execution stage, where the de-
fensive play is recognized and the offense responds with an
appropriate play switch for that defensive play. We train a
set of SVM classifiers using 40 instances of every possible
combination of offense (8) and defense plays (8), from each
of the 12 starting formation configurations. This stage yields
a set of models used for play recognition during the game.
Next, we calculate and cache play switches using the follow-
ing procedure:

1. Collect data by running the RUSH 2008 football simula-
tor 50 times for every play combination.

2. Create yardage lookup tables for each play combination.
This information alone is insufficient to determine how
good a potential play is to perform the play switch action
on. The transition play must resemble our current offen-
sive play or the offensive team will spend too much time
retracing steps and perform very poorly.

3. Compute similarity matrix between offensive plays for
all formation/play combinations.

4. Create the final play switch lookup table based on both
the yardage information and the play similarity.

To create the play switch lookup table, the agent first
extracts a list of offensive plays L given the requirement
yards (Li) > ε where ε is the least amount of yardage
gained before the agent changes the current offensive play
to another. We used ε = 1.95 based on a quadratic
polynomial fit of total yardage gained in 6 tests with
ε = {MIN, 1.1, 1.6, 2.1, 2.6,MAX} whereMIN is small
enough no plays are selected to change and MAX where
all plays are selected for change to the highest yardage play
with no similarity comparison. Second, from the list L find
the play most similar to our current play, and add it to the
lookup table.

During execution, the offense uses the following proce-
dure:
1. At each observation less than 4, collect movement traces

for each play.



Figure 4: Comparison of greedy play switch and similarity-
based switching. Our similarity-based play switch method
(shown in red) outperforms both baseline Rush offense
(blue) and a greedy play switch metric (green).

2. At observation 3, use LIBSVM with the collected move-
ment traces and previously trained SVM models to iden-
tify the defensive player.

3. Access the lookup table to find best(i) for our current
play i.

4. If best(i) 6= i, Send a change order command to the of-
fensive team to change to play best(i).

As described in the Adapting the Current Play section, our
system allows for different methods of using the retrieved
play. The agent can switch the play for either every offensive
player or a subset.

Empirical Evaluation
Our goal is the answer the following questions:

1. Does our play switching algorithm improve yardage
gained?

2. Does retrieval incorporating similarity with the current
play outperform a greedy strategy which selects solely
based upon expected yardage gained?

3. What are the effects of subgroup switching on play per-
formance?

To answer the first two questions, we ran the RUSH 2008
simulator for ten plays on each possible play configura-
tion under three conditions: a baseline without any play
switching, our play switch model (using the yardage thresh-
old ε = 1.95 as determined by the quadratic fit), and a
greedy play switch strategy based solely on the yardage ta-
ble (ε = MAX). The results are shown in Figure 4.

Overall, the average performance of the offense went
from 2.82 yards per play to 3.65 yards per play (ε = 1.95)
with an overall increase of 29%, ±1.5% based on sampling
of three sets of ten trials. An analysis of each of the forma-
tion combinations (Figure 4) shows the yardage gain varies
from as much as 100% to as little as 0.1%. Power vs. 23 is
dramatically boosted from about 1.5 yards to about 3 yards

Figure 5: The play-yardage gain over baseline Rush offense
yielded by various play switch strategies.

per play, doubling yards gained. Other combinations, such
as Split vs. 23 and Pro vs. 32 already gained high yardage
and improved less dramatically at about .2 to .4 yards more
than the gains in the baseline sample. Overall, our model’s
performance is consistently better for every configuration
tested.

Results with ε = MAX clearly shows simply changing
to the greatest yardage generally results in poor performance
from the offense. When the similarity metric is not used,
the results are drastically reduced. The reason appears to be
mis-coordinations between teammates accidentally induced
by the play switch; by maximizing the play similarity simul-
taneously, the possibility of mis-coordinations is reduced.

To evaluate the subgroup switching, we ran the simula-
tion three additional trails. In each trial, our play switch-
ing method was allowed to switch only one of the offensive
player subgroups. Using the improvement in yardage, we
compared these trials to the full offense switch and the best
offensive play against the defense. The results (shown in
Figure 5) clearly indicated the best subgroup switch (consis-
tently Group 1) produced greater gains than the total team
switch, which still performed better than the baseline. Early
play recognition combined with subgroup switching yields
the best results, assuming no oracular knowledge of the
other team’s intentions prior to run-time.

Related Work
Previous work on team behavior recognition has been pri-
marily evaluated within athletic domains, including Amer-
ican Football (Intille and Bobick 1999), basketball (Bhan-
dari et al. 1997; Jug et al. 2003), and Robocup soc-
cer simulations (Riley and Veloso 2000; 2002; Kuhlmann
et al. 2006). In Robocup, most of the research on team
intent recognition focused on coaching. Techniques have
been developed to extract specific information, such as home
areas (Riley et al. 2002), opponent positions during set-
plays (Riley and Veloso 2002), and adversarial models (Ri-
ley and Veloso 2000), from logs of Robocup simulation
league games. However, the coaching agents use offline



processing to improve their team’s performance in future
games. In contrast, our agent immediately takes action on
the recognized play to evaluate possible play switches.

Comparatively few case-based reasoning researchers have
investigated spatial reasoning. Most focus on retriev-
ing precedents based on quantitative and qualitative fea-
tures (Holt and Benwell 1995) without any adaption. Us-
ing insights from research on pen stroke recognition (Wob-
brock et al. 2007), our spatial similarity metric incorpo-
rates spatio-temporal knowledge into retrieval, which is then
used to adapt the current situation. Galatea (Davies et al.
2005) uses stored visual problem-solving episodes consist-
ing of visual transformations, which are employed analogi-
cally to arrive at a solution for new problems. While transfer
in Galatea is iterative, our play switch is a one-shot process.
Furthermore, Galatea places little emphasis on retrieval. Our
model uses spatial knowledge throughout retrieval, first in
categorizing the opposing teams play, then in determining
the most similar play from the case base.

Rush 2008 was developed as a platform for evaluating
game-playing agents and has been used to study the problem
of learning strategies by observation (Li et al. 2009). Inten-
tion recognition has been used within Rush 2008 as part of a
reinforcement learning method for controlling a single quar-
terback agent (Molineaux et al. 2009). In this paper, our
approach addresses policies across multiple agents.

Conclusion

Accurate opponent modeling is an important stepping-stone
toward the creation of interesting autonomous adversaries.
In this paper, we present an approach for online strategy
recognition in the Rush 2008 football simulator. After iden-
tifying the defense’s play, our agent evaluates the advantage
of executing a play switch based on the potential of other
plays to improve the yardage gained and their similarity to
the current play.

We have shown that spatio-temporal features enable on-
line strategy recognition in the early stages of a play. Fur-
thermore, by incorporating spatial similarity into the se-
lection of the appropriate play switch, our method avoids
mis-coordinations between offensive players, increasing the
yardage gained. Additionally, we demonstrate that limiting
the play switch to a subgroup of key players further im-
proves performance.

In future work, we plan on extending our game playing
agent to play the entire game. While our focus on gaining
more yards is central to successful offense, in the complete
game, offensive strategy becomes more complex, including
scoring and clock management. As discussed previously, we
plan to explore methods for automatically identifying key
player subgroups for adapting the play by examining motion
correlations between players. Finally, we plan to explore
these ideas of online strategy recognition in other domains.
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