
Authoring Behaviors for Games using Learning
from Demonstration

Manish Mehta, Santiago Ontañón, Tom Amundsen, and Ashwin Ram

CCL, Cognitive Computing Lab
Georgia Institute of Technology

Atlanta, GA 30332/0280
{mehtama1,santi,amundsen,ashwin}@cc.gatech.edu

Abstract. Behavior authoring for computer games involves writing be-
haviors in a programming language. This method is cumbersome and
requires a lot of programming effort to author the behavior sets. Further
this approach restricts the behavior set authoring to people who are ex-
perts in programming. This paper will describe our approach to design
a system that will allow a user to demonstrate behaviors to the system,
which the system will use to learn behavior sets for a game domain. With
learning from demonstration, we aim at removing the requirement that
the user has to be an expert in programming, and only require him to
be an expert in the game. The approach has been integrated in a easy
to use visual interface and instantiated for two domains, one a real time
strategy game and another an interactive drama.

1 Introduction

State-of-the-art computer games are usually populated with many characters
that require intelligent and believable behaviors. However, even though there
have been enormous advances in computer graphics, animation and audio for
games, most of the games contain very basic artificial intelligence (AI) tech-
niques. In the majority of computer games traditional AI techniques fail to play
at a human level because such games have vast search spaces in which the AI
has to make decisions in real-time. Such enormous search spaces cause the game
developers to spend a large effort in hand coding specific strategies that play
at a reasonable level for each new game. Game designers are typically non AI
experts, and thus defining behaviors using a programming language is not an
easy task for them. They might have a clear idea in mind of the behavior they
want particular characters in the game to exhibit, but the barrier is encoding
those ideas into actual code. Ideally, we need an approach that can allow game
designers to easily author behavior sets for particular games.

Human learning is often accelerated by observing a task being performed or
attempted by someone else. In fact, infants spent a lot of their time repeating the
observed behaviors [11]. These capabilities of the human brain are also evident
in computer games where players go through a process of training and imitating



experienced players. These results have inspired researchers in artificial intel-
ligence to study learning from imitation techniques. However except for a few
attempts, there have been very few attempts at their integration in computer
games. By observing an expert’s actions, new behaviors can quickly be learnt
that are likely to be useful; because they are already being used by the expert
successfully. In this paper, we present an approach that utilizes this ability to
extract behavioral knowledge for computer games from expert demonstrations.
Using the architecture presented in this paper the game authors demonstrate
the behavior to be learnt (maybe by controlling some game characters manu-
ally) instead of having to code the behavior using a programming language and
the system learns from that demonstration. In order to achieve that goal, we
use case-based reasoning (CBR) techniques, and in particular case-based plan-
ning [12]. The idea is to represent each behavior as a plan, and use case-based
planning to reuse the behaviors learnt from demonstrations in order to play the
game. Our architecture has been instantiated in two domains, one a real time
strategy game and the other an interactive drama.

The rest of the paper is organized as follows. In Section 5 we discuss the
previous work in the area of learning from demonstration. We next present our
architecture in Section 2. We discuss the concrete instantiation of the architec-
ture in real time strategy game WARGUS (an open source clone of the popular
game WARCRAFT II) in Section 3 and interactive drama domain in Section 4.
We finally conclude with some future steps in Section 6.

2 Learning from Demonstration Architecture

Our main goal is to create a system that allows a game designer to easily author
AI behaviors using learning from demonstration, in opposition to having him
encoding behaviors in some programming language. In order to achieve that
goal, we have designed a learning from demonstration architecture (shown in
Figure 1) that consists of four steps:

– Demonstration: The human plays the game, demonstrating the particular
behavior he wants the system to learn. This process results in a trace, i.e.
a log file that contains each action that the expert executed, together with
their respective game state and time stamps.

– Annotation: The human annotates the trace specifying which goals (selected
from a predefined set of goals) was he attempting with each action. In our
experiments, annotation is performed using an easy to use graphical GUI.
Section 2.2 explains why annotation is desirable.

– Behavior Learning: The annotated trace is handed to a behavior learning
module, which can automatically extract procedural behaviors from the an-
notated trace, and store them in a behavior base.

– Behavior Execution: Once the behavior base has been populated, the learnt
behaviors can be executed in the game using a behavior execution engine.
We propose to use a case-based planning [12] behavior execution engine,
where each one of the behaviors is represented as a case.



Trace Annotated Trace

Annotation

Game
Behavior 

Game
Learning

Expert

Behavior 
Execution

Actions

Behavior Library

Fig. 1. Our general Learning from Demonstration Architecture, involving 4 steps:
demonstration (playing the game), annotation, behavior learning and finally behav-
ior execution.

2.1 Demonstration

The game domain needs to provide a way to demonstrate behaviors. Depending
on the game at hand, this can be done using the normal interface that a player
would use to play the game, or through a special interface if required. The main
idea is to let the expert use the basic set of primitives that are available within
the game world. For example, in our RTS game domain, WARGUS the standard
game playing interface can be used. However, in our interactive drama domain,
Murder Mystery, a specific interface to control virtual characters inside the game
world was developed. This was the case because the default game interface in
that game did not generate traces nor allowed us to control the characters at
the level of detail we wanted.

The author uses the demonstration interface to play the game. Apart from
this interface, a basic mechanism to record the trace is required. In our architec-
ture, a trace is composed of a list of entries, where each entry is a triple: time
stamp, game state, primitive actions. Representing that at a particular time, the
expert executed some primitive actions.

2.2 Trace Annotation

The next step is to annotate the trace. In this process, the expert specifies
which goals was he pursuing for each particular action. This process requires
a collection of goals being defined for each game for which the architecture is
instantiated. Once a set of goals is defined, the expert can simply associate each
of the actions in the game with one or more of the set of available goals.

The intuition behind annotation is that if a set of actions are labeled as
achieving the same goal, then the system will put those actions in a single be-



havior that achieves the specified goal. Thus, annotations can be used in order
to group together the actions that were demonstrated into individual behaviors.
With this in mind, we can now see that the set of goals that have to be defined
for each game is a set of goals that allows the human to decompose the task
of playing the game in subtasks for which behaviors can be learnt. Notice that
annotation could be partially automated (as we propose in [9]). However, an au-
tomatic process of annotation leaves the expert with less control over the learnt
behaviors. An automatic annotation process is desirable if the goal is to build
a system that can learn how to play the game autonomously. However, if the
goal is to facilitate the task of a human author, annotation provides a simple
way in which the author (or expert) can control which behaviors will be learnt.
For example, in a given game, the expert might, by accident, achieved some
particular goal during the game in a way that he did not want to demonstrate
(just as a side effect of some actions). In an automated annotation process, that
will result in the system learning an undesired behavior, which for the purposes
of the system learning to play the game is desirable, but for the purposes of
helping the author defining the behaviors he wants to define is undesirable. For
that reason, we believe that annotation is desirable when the goal is to assist a
human in behavior authoring.

2.3 Behavior Learning

In order to learn behaviors, the annotated trace is analyzed to determine the
temporal relations among the individual goals appearing in the trace. The kind
of analysis required is a simplified version of the temporal reasoning framework
presented by Allen [2]. In our framework, we are only interested in knowing if
two goals are pursued in sequence, in parallel, or if one is a subgoal of the other.
We assume that if the temporal relation between a particular goal g and another
goal g′ is that g happens during g′, then g is a subgoal of g′.

From this temporal analysis of goals, procedural descriptions of the behavior
of the expert can be extracted. Notice that an expert might assign more than
one goal to each action. Thus, the system can learn hierarchical behaviors. Also,
once the system has learn behaviors for each one of the goals used by the expert,
a global behavior that uses these behaviors as “subroutines” can also be inferred
(See [10] for more details).

Each one of the learnt behaviors are stored in a behavior library for future
use. Notice that no generalization of the behaviors is attempted at learning
time. Since we are proposing to use a case-based reasoning approach (where
each behavior is considered to be a case), all generalization is left for problem
solving time, i.e. for when the system is playing a game.

2.4 Behavior Execution

Once behaviors have been learned, they are ready to be executed in the game.
Thus, a behavior execution engine is required. We propose to use a hierarchical
case-based planner to perform this task. Each behavior will be seen as a partial



Cycle Player Action Annotation

8 1 Build(2,“pig-farm”,26,20) -

137 0 Build(5,“farm”,4,22) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

638 1 Train(4,“peon”) -

638 1 Build(2,“troll-lumber-mill”,22,20) -

798 0 Train(3,“peasant”) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

878 1 Train(4,“peon”) -

878 1 Resource(10,5) -

897 0 Resource(5,0) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

... ... ... ...
Table 1. Snippet of a real trace generated after playing WARGUS. The game states
for each entry in the trace are omitted.

plan to achieve a particular goal, and the hierarchical planner will combine them
together to form full plans to achieve the goals of the character or characters the
system is controlling.

3 First Game Domain: WARGUS

Real-time strategy (RTS) games have several characteristics that make behav-
ior authoring difficult: huge decision and state spaces [1, 3], non determinism,
incomplete information, complex durative actions, and real time. WARGUS is
a real-time strategy game where each player’s goal is to remain alive after de-
stroying the rest of the players. Each player has a series of troops and buildings
and gathers resources (gold, wood and oil) in order to produce more troops and
buildings. Buildings are required to produce more advanced troops, and troops
are required to attack the enemy. In addition, players can also build defensive
buildings such as walls and towers. Therefore, WARGUS involves complex rea-
soning to determine where, when and which buildings and troops to build.

In order to demonstrate a behavior set for WARGUS an expert simply
plays a game. As a result of that game, we obtain a game trace. Table 1 shows a
fragment of a real trace from playing a game of WARGUS. In the WARGUS
domain, each trace entry is limited to a single action. For instance, the first action
in the game was executed at cycle 8, where player 1 made his unit number 2
build a “pig-farm” at the (26,20) coordinates.

The next step is to annotate the trace. For the annotation process, the expert
uses a simple annotation tool that allows him to specify which goals was he
pursuing for each particular action. The annotation tool simply presents the
execution trace to the expert (with small screenshots of the state of the game at
every trace entry, to help the human remember what he was doing) and he can
associate goals to actions. All the goal types defined for the WARGUS domain



Fig. 2. A screenshot of our WARGUS trace annotation tool.

are available to the expert, and he can fill in the parameters of each goal when
annotating. Figure 2 shows a screenshot of such tool.

In our approach, a goal g = name(p1, ..., pn) consists of a goal name and a set
of parameters. For instance, in WARGUS, some of the goal types we defined are:
WinWargus(player), representing that the action had the intention of making
the player player win the game; KillUnit(unit), representing that the action had
the intention of killing the unit unit; or SetupResourceInfrastructure(player, peasants, farms),
indicating that the expert wanted to create a good resource infrastructure for
player player, that at least included peasants number of peasants and farms
number of farms.

The fourth column of Table 1 shows the annotations that the expert specified
for his actions. Since the snippet shown corresponds to the beginning of the game,
the expert specified that he was trying to create a resource infrastructure and,
of course, he was trying to win the game.

The annotated trace is next processed by the behavior learning module, that
encodes the strategy of the expert in this particular trace in a series of behaviors.

Notice that in our system we don’t attempt any kind of generalization of the
expert actions. If a particular expert action in the trace is Build(5, ”farm”, 4,
22), that is exactly the action stored in a snippet. Thus, using the learnt snip-
pets to play a new scenario in WARGUS, it is very likely that the particular
values of the parameters in the action are not the most appropriate for the new
scenario (for instance, it might be the case that in the new map the coordinates
4,22 correspond to a water location, and thus a farm cannot be built there). In
our WARGUS implementation, the behavior execution engine is responsible to
adapt those parameters on run time.



Our execution engine in WARGUS is a case-based planner, that uses a set
of adaptation rules in order to adapt the parameters of each of the actions in
each behavior before executing it. Thus, in our implementation in the WAR-
GUS domain, the game state in which the human demonstrated each action is
stored together with the behavior. For details on how adaptation at run time is
performed, see [10].

In order to evaluate our techniques in WARGUS, we developed an IDE
from where users could launch WARGUS to start a demonstration, annotate
demonstrations, manipulate behaviors, and test them on the game [13]. Our
results show that users were able to successfully demonstrate behaviors using
our system, and that they felt demonstrating behaviors was an easier way to
generate scripts, than coding them by hand.

4 Second Game Study: Murder Mystery

In recent years, there has been a growing interest in creating story based interac-
tive systems where the player experiences a story from a first person perspective,
interacts with autonomous, believable characters. Interactive drama presents one
of the most challenging applications of autonomous characters, requiring char-
acters to simultaneously engage in moment-by-moment personality-rich physical
behavior, exhibit conversational competencies, and participate in a dynamically
developing story arc. Hand authoring of behavior for believable characters allows
designers to craft expressive behavior for characters, but nevertheless leads to
excessive authorial burden [6]. Tools are needed to support story authors, who
are typically not artificial intelligence experts, to allow them to author behaviors
in an easy way.

The interactive drama we are developing is named Murder Mystery (MM).The
story set up consists of six characters and is set up in a British mansion at the
beginning of the 20th century. The player controls one of the character and is free
to interact with the rest of the characters using natural language and also move
freely around the house and manipulate some objects. In particular, the drama
starts when two of the characters decide to celebrate an engagement party, and
invite two friends to a dinner in their newly acquired mansion. The remaining
two characters are the butler of the house and the father of the bride. Most of the
characters have strong feelings (love or hate) for some of the other characters,
and as the story unfolds the player will discover hidden relations between them.
The player will take the role of one out of three possible characters and will be
able to act freely in the mansion.

In order to demonstrated behaviors, the user observes a character from a
third person perspective and is able to control it using a Graphical User Interface
(GUI). The GUI consists of a series of buttons and text fields that allow the user
to perform the following actions: speak, move forward, move backward, move left,
move right, rotate, and play an animation. Such interface records a similar trace
as for our WARGUS domain (an example is shown in Table 2. The context
associated with each logged action describes the current game state and consists



Cycle Player Action Annotation

8 Mary Walk(”230,400,1920”, ”230,400,1920”, Mary) -

137 Mary Speak(Tracy, ”Hi Tracy”) Greet(Tracy)

378 Mary Wave () Introduce(Tracy)

500 Mary Speak(Tracy, ”I am Manuel Sharma”) -

678 Mary Smile () -

800 Mary Speak(Tracy, ”I am working as a technician”) -

938 Mary Speak(Tracy,”Could you pass me a drink?’) AskforObject(Tracy, drink)

... ... ... ...
Table 2. Snippet of a real trace generated after playing Murder Mystery .

of information about the map and characters. Each object and player in the
map is logged with as much information as possible (since it will help the CBR
system to adapt actions at run-time).

In order to carry out the annotation, some of the goals that have been used
are:

– Greet(character): representing that the action had the intention of greeting
another.

– AskforObject(character, object): representing that the action had the in-
tention of asking for a particular object object from a character character.

– Introduce(character): the action had the intention of introducing to a par-
ticular character

– Insult(character): the action had the intention of insulting a particular char-
acter

– Hurt(character): the action had the intention of hurting a particular char-
acter.

In the same way as for WARGUS this trace would then be given to the
behavior learning module, that will learn behaviors from it. Figure 3 shows
an example of a learnt behavior in Murder Mystery. Although an extensive
evaluation of our system in the Murder Mystery domain is still part of our future
work, initial evaluations suggest that it is easier to author behaviors using our
demonstration interface than coding them by hand.

In an analogous way as for our WARGUS domain, in the Murder Mystery,
the game state associated with each action is stored, so that the behavior exe-
cution engine (a case-based planner) can adapt those actions.

5 Related Work

An early collection of learning by demonstration work was published in the
“Watch What I Do.” book [4]. In one of the articles in the book, Henry Lieber-
man describes a system called Tinker, that is able to learn from examples that
a programmer demonstrates. Using this framework, a programmer can demon-
strate sets of examples, starting with simple examples, and working up to more



Introduce(tracy)

{

Wave();

Speak(Tracy, "I am Manuel Sharma");

Smile();

Speak(Tracy, "I am working as a technician");

}

Fig. 3. Snippet of a behavior learnt after behavior demonstration in Murder Mystery .

complicated ones. Using these examples, Tinker learns how to operate on its
own. A more recent example is provided by Nakanishi et al. [7], who designed
a system that learns biped locomotion by observing humans walking. Nakan-
ishi et al. describe an approach of using dynamical movement primitives as a
central pattern generator, which are then used to learn the trajectories for the
legs in robot locomotion. Nicolescu [8] describes a modular architecture which
allows a robot to learn by generalizing information received from multiple types
of demonstrations, and allows the robot to practice under the demonstrator’s
supervision. This system, albeit in a robotic domain is quite similar to ours, and
provides a general way to learn primitive behaviors through demonstration in
order to accomplish a given task.

Kaiser and Dillman [5] presented a general approach to learning from demon-
stration using sensor-based robots. They describe how skills can be acquired from
humans, “learned” in such a way that they can be used to achieve tasks, and
refined so that the agent’s performance will constantly improve. The system
uses action primitives that are very concrete and easy to predict, such as deter-
mining what angle to move a robotic arm. In our system, action primitives are
parametrized like talking to another character in the game, which can potentially
have results that are hard to predict.

6 Conclusions and Future Work

Learning from demonstration is a powerful mechanism to quickly learn behaviors.
In this paper, we discuss how the principle of imitation learning can facilitate
the programming of computer game characters. Moreover, we demonstrated the
approach by reporting two implemented systems based on the same learning
from demonstration architecture.

One of the key ideas introduced in this paper is that by the use of annota-
tions in the demonstrations, the author can have control of the behaviors being
learnt during the learning from demonstration process. Behavior authoring is
ultimately a programming task, and as such is non-trivial when the set of be-
haviors that need to be authored are complex. However, we have seen that by
using case-based planning techniques, concrete behaviors demonstrated in con-
crete game situations can be reused by the system in a range of other game
situations, thus providing an easy way to author general behaviors.



Part of our future work involve trying to reduce the annotation task to a
minimum, but that the author still has control over the behavior authoring
process. One of the ideas is to implement a mixed initiative approach where the
system will automatically annotate a trace, and the author will have the option
(it desired) of changing the annotations. We are also working on implementing
our approach in more domains to evaluate its strengths and weaknesses. In our
initial evaluations we have seen that our approach is good for high level behavior
demonstration, where as it is still not very good at low level reactive control
(required for action games).

References

1. David Aha, Matthew Molineaux, and Marc Ponsen. Learning to win: Case-based
plan selection in a real-time strategy game. In ICCBR’2005, number 3620 in LNCS,
pages 5–20. Springer-Verlag, 2005.

2. James Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

3. Michael Buro. Real-time strategy games: A new AI research challenge. In IJ-
CAI’2003, pages 1534–1535. Morgan Kaufmann, 2003.

4. Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David
Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch what I do: pro-
gramming by demonstration. MIT Press, Cambridge, MA, USA, 1993.

5. M. Kaiser and R. Dillmann. Building elementary robot skills from human demon-
stration. In In International Symposium on Intelligent Robotics Systems, pages
2700–2705, 1996.

6. B. Magerko, J. Laird, M. Assanie, A. Kerfoot, and D. Stokes. AI characters and
directors for interactive computer games. In Proceedings of the 2004 Innovative
Applications of Artificial Intelligence Confercence, 2004.

7. Jun Nakanish, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and Mit-
suo Kawato. Learning from demonstration and adaptation of biped locomotion
with dynamical movement primitives, 2003.

8. Monica Nicolette Nicolescu. A framework for learning from demonstration, gen-
eralization and practice in human-robot domains. PhD thesis, Los Angeles, CA,
USA, 2003. Adviser-Maja J. Mataric.

9. Santiago Ontañón, Kane Bonnette, Prafulla Mahindrakar, Marco A. Gómez-
Mart́ın, Katie Long, Jainarayan Radhakrishnan, Rushabh Shah, and Ashwin Ram.
Learning from human demonstrations for real-time case-based planning. In The
IJCAI-09 Workshop on Learning Structural Knowledge From Observations, 2009.

10. Santi Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. Case-based
planning and execution for real-time strategy games. In Proceedings of ICCBR-
2007, pages 164–178, 2007.

11. Rajesh P. N. Rao, Aaron P. Shon, and Andrew N. Meltzoff. A bayesian model of
imitation in infants and robots. In In Imitation and Social Learning in Robots,
Humans, and Animals. Cambridge University Press, 2004.

12. L. Spalazzi. A survey on case-based planning. Artificial Intelligence Review,
16(1):3–36, 2001.

13. Suhas Virmani, Yatin Kanetkar, Manish Mehta, Santiago Ontañón, and Ashwin
Ram. An intelligent ide for behavior authoring in real-time strategy games. In
AIIDE, 2008.


