
SEED @ CEDI 2013
El primer foro científico para el intercambio de ideas y resultados de investigación sobre el diseño, la ingeniería y la

teoría de la tecnología aplicada al entretenimiento en España. Trabajo en inteligencia artificial, informática gráfica,

ingeniería del software e interacción persona-computador aplicado a la creación de sistemas de entretenimiento digital.

ACTAS DE

SEED 2013

PRIMER SIMPOSIO ESPAÑOL DE

ENTRETENIMIENTO DIGITAL
UNIVERSIDAD COMPLUTENSE DE MADRID

18 Y 19 DE SEPTIEMBRE DE 2013

Pedro Antonio González Calero y
Marco Antonio Gómez Martín (Eds.)

Actas del Primer
Simposio Español de
Entretenimiento Digital
Universidad Complutense de Madrid,
18 y 19 de Septiembre, 2013

Editores

Pedro Antonio González Calero
Departamento de Ingeniería del Software e Inteligencia Artificial,
Facultad de Informática
Universidad Complutense de Madrid
28040 Madrid, España
E-mail: pedro@fdi.ucm.es

Marco Antonio Gómez Martín
Departamento de Ingeniería del Software e Inteligencia Artificial,
Facultad de Informática
Universidad Complutense de Madrid
28040 Madrid, España
E-mail: marcoa@fdi.ucm.es

Todos los derechos reservados. Cualquier forma de reproducción, distribución, comunicación
pública o transformación de esta obra sólo puede ser realizada con la autorización expresa de sus
titulares, salvo excepción prevista por la ley.

© 2013 de los autores

ISBN: 978-84-695-8350-0

Prefacio

El Simposio Español de Entretenimiento Digital, SEED 2013, nace con el objetivo de
convertirse en el primer foro científico para el intercambio de ideas y resultados sobre el
diseño, la ingeniería y la teoría de la tecnología aplicada al entretenimiento en España. Esto
incluye, por una parte, trabajo en inteligencia artificial, informática gráfica, ingeniería del
software o interacción persona-computador aplicados a la creación de sistemas de
entretenimiento digital, y, por otra, resultados de la aplicación de las tecnologías propias del
entretenimiento digital a la enseñanza, la medicina, la comunicación o el arte.

En su primera edición, este Simposio se celebra en el marco del Congreso Español de
Informática (CEDI 2013) lo que, además de facilitar todos los aspectos prácticos de la
organización, ha de permitir la búsqueda de sinergias con otras comunidades científicas del
ámbito Informático.

SEED nace con la vocación de facilitar la transferencia de resultados de investigación a la
industria y por ello se ha promovido la participación de profesionales y se ha contado con
figuras relevantes de la industria nacional del videojuego como ponentes invitados.

Agosto 2013 ! Pedro Antonio González Calero
! Marco Antonio Gómez Martín

Program Committee

Laura Baigorri Ballarin Universidad de Barcelona
Isabel Barbancho Universidad de Málaga
David Camacho Universidad Autónoma de Madrid
Miguel Chover Universidad Jaume I
Antonio J. Fernández Leiva Universidad de Málaga
Pablo Alejandro Figueroa Forero Universidad de los Andes (Bogotá)
Pascual González Universidad de Castilla La Mancha
Pedro González Calero Universidad Complutense de Madrid
Marco Antonio Gómez Mart́ın Universidad Complutense de Madrid
Javier Jaén Universidad Politécnica de Valencia
Sergi Jorda Universidad Pompeu Fabra
Moisés Mañas Universidad Politécnica de Valencia
José Pascual Molina Massó Universidad de Castilla La Mancha
Antonio M. Mora Garćıa Universidad de Granada
Jaime Munárriz Universidad Complutense de Madrid
Mateu Sbert Universidad de Gerona

Table of Contents

Modelling Human Expert Behaviour in an Unreal Tournament 2004 Bot 1

Antonio Mora, Francisco Aisa Garćıa, Ricardo Caballero, Pablo Garćıa Sánchez,
Pedro Castillo, Juan J. Merelo and Paloma De Las Cuevas

Domain Modeling as a Contract between Game Designers and Programmers 13

David Llanso, Pedro Pablo Gómez-Mart́ın, Marco Antonio Gómez-Mart́ın and Pedro
González-Calero

Stories from Games: Content and Focalization Selection in Narrative Composition 25

Pablo Gervás

Playability as Measurement of the Interaction Experience on Entertainment Systems 37

Jose Luis Gonzalez Sanchez and Francisco Luis Gutiérrez Vela

Creativity and Entertainment: Experiences and Future Challenges . 49

Alejandro Catala, Javier Jaen, Patricia Pons and Fernando Garcia-Sanjuan

Evolving Aesthetic Maps for a Real Time Strategy Game. 61

Raul Lara-Cabrera, Carlos Cotta and Antonio J. Fernández Leiva

Code Reimagined: Visualización de código basada en técnicas de gamificación 72

Javier Asensio, Antonio Mora, Juan J. Merelo and Pablo Garcia

Impacto de las nuevas tecnoloǵıas en la educación infantil . 84

Fernando Palero and David Camacho

Implementation of a videogame: Legends of Girona. 96

Antonio Rodriguez, Ruben Garcia, Juan Manuel Garcia, Milan Magdics and Mateu
Sbert

Drum-hitting gesture recognition and prediction system using Kinect . 108

Alejandro Rosa-Pujazón, Isabel Barbancho, Lorenzo J. Tardón and Ana M. Barbancho

A Low-Cost VR System for Immersive FPS Games . 119

José Pascual Molina Massó, Arturo Simón Garćıa Jiménez, Jonatan Martinez Muñoz
and Pascual Gonzalez López

UHotDraw: a GUI Framework to Simplify Draw Application Development in Unity 3D . . . 131

Ismael Sagredo-Olivenza, Gonzalo Flórez-Puga, Marco Antonio Gómez-Mart́ın and
Pedro González-Calero

Additional Reviewers

Fernández de Vega, Francisco
Mocholi, Jose A.

Modelling Human Expert Behaviour in an
Unreal Tournament� 2004 Bot

A.M. Mora, F. Aisa, R. Caballero, P. Garćıa-Sánchez,
P.A. Castillo, J.J. Merelo, and P. De las Cuevas

Departamento de Arquitectura y Tecnoloǵıa de Computadores.
Universidad de Granada (Spain)

{amorag,pgarcia,pedro,jmerelo,paloma}@geneura.ugr.es,
francisco aisa@hotmail.com, rcabamo@gmail.com

Abstract. This paper presents a deep description of the design of an
autonomous agent (bot) for playing 1 vs. 1 dead match mode in the first
person shooter Unreal Tournament� 2004 (UT2K4). The bot models
most of the behaviour (actions and tricks) of an expert human player in
this mode, who has participated in international UT2K4 championships.
The Artificial Intelligence engine is based on two levels of states, and
it relies on an auxiliary database for learning about the fighting arena.
Thus, it will store weapons and items locations once the player has dis-
covered them, as a human player could do. This so-called expert bot
yields excellent results, beating the game default bots in the hardest
difficulty, and even being a very hard opponent for the human players
(including the expert).

1 Introduction

Autonomous agents in videogames (so-called bots) have tried to behave as human
players from their emergence in the first years of the nineties. They normally
model a part of a human expert knowledge regarding the game, in order to
become a competitive opponent to play against some other humans or bots, or
lately, to cooperate with or aid the main players. They are also named non-
playing characters (NPCs), classical secondary characters in conversational or
rol games, but referring nowadays to the same concept as bots: an Artificial
Intelligence (AI) engine which is able to perform the same actions in a game as
a human player.

First Person Shooter games (FPSs) are one of the most profitable area in the
study and implementation of bots. In these games the player can only see the
hands and the current weapon of her character, and has to fight against enemies
normally by shooting to them. They usually offer a multiplayer fighting mode
placed in a limited arena. From their first years (begin of the nineties) these
games have been open to the creation of bots, initially aimed to their graphical
aspect, but later giving tools to implement even their whole AI (or a part).

Unreal� , launched for PC by Epic Games in 1998, had a great success since
it incorporates the best multiplayer mode to date. In addition it started an open-
code philosophy to make it easier the game-modding (modification), including

1

with every copy of the game an editor (UnrealEd), an own programming lan-
guage (UnrealScript), and a compiler, to add or change almost whatever the
user desires: scenarios, items, characters, etc. The AI engine is also open, so the
state-based behaviour implemented in the game characters can be changed in a
number of ways, just having some critical actions restricted.

Moreover, some additional tools have arisen a few years ago, such as Game-
Bots [1], a mod (new utility for the game) that allows the control of characters
(bots) in the game through network connections to other programs. The game
sends character’s sensory information to the client program, which can decide the
actions the bot will take. These actions are sent back to the game which inter-
prets them for the bot movement, shooting, jumping, etc. It was initially released
for the Unreal sequel Unreal Tournament� (UT) and later implemented for UT
2003. Over the basis of that tool, it was later launched Pogamut [2], which de-
fines an interface (using GameBots architecture) to program the bots externally
using Java. It was implemented for Unreal Tournament� 2004 (UT2K4).

These open-code possibilities and external tools are the main reasons why this
game environment have been widely considered in the computational intelligence
researching field [3–9].

This work is also embedded in the UT2K4 environment, and uses Pogamut
for implementing a bot which we have baptised as UT Expert Bot (E-Bot). Its
behaviour (AI) is shaped as a Finite State Machine (FSM) [10] (based on two
levels of states), that describes a complex set of rules. These rules are based
on the knowledge of an UT2K4 Spanish expert player. It has been modelled
according to his experience, including several tricks, as the humans players do,
to achieve a better behaviour in the game.

2 Unreal Tournament� 2004 Game Features

As previously commented, Unreal� was a very famous FPS published in 1998
for PCs. It presented a very good single mode, but the multiplayer possibilities
gave it (and still give) a great success. Thus, in 1999 it was released Unreal
Tournament�, which turned the series into multiplayer-aimed games, having
several arenas specifically designed for massive battles between humans and/or
bots. The most successful sequel in this series was Unreal Tournament 2004
(UT2K4), due to the original weapons, the excellent design of scenarios and
the famous amazing opponents’ AI, based on states and events, inside a huge
Finite State Machine [10] (where plenty of states and substates are present), and
including several optimised scripts (predefined actions).

This framework inherited all the features that the first Unreal Engine offered
for modders (people who add or change components in the game), such as maps,
weapons, items, or even bots. Some of these features are:

– It includes a proprietary programming language, called UnrealScript, which
combines the C and Java syntax, with some useful features, such as a garbage
collector. It is object-oriented and handles implicit references (every object
is represented by a pointer).

2

– This language includes the declaration and handling of states, which are the
most powerful feature of the Unreal bots’ AI. They model a bot status and
behaviour at a time, and are defined as classes. During the game (depending
on the bot location and status), the current state of the bot is changed, and
the functions defined in it are performed.

– In addition to the game, a programming environment, named UnrealEditor
is included. It makes it easier the management of the hierarchy of classes, as
well as the creation of new classes which inherit from the existing ones.

– It is possible to change an existing class (making a mod) by creating another
one which inherits from it, and modifying the code of the desired functions
or methods inside the new class.

In addition, this new engine (Unreal Engine 2.5) fixed some of the drawbacks
that UnrealScript had, such as the small number of elements in arrays, the
limitations in the number of iterations in loops, or the file input/output.

Moreover there were some projects which created specific tools for inter-
acting with UT and UT2K4 engines, such as the aforementioned Gamebots [1]
and Pogamut [2]. These projects let the user to implement mods (mainly bots),
using more powerful and flexible programming languages than the limited Un-
realScript, like Java. The latter is the tool we have considered in this work due
to its ’simplicity’ and proved value in the implementation of bots (it has been
widely used by several authors in the literature).

Going back to the game, the most traditional combat mode is Death Match,
in which the player must eliminate as many enemies as possible before the match
ends, avoiding being defeated by other players. Everyone has a limited number
of health points, which are decreased as the character gets hurt. If the health
counter goes down to 0, the player is defeated, and a frag is added to the last
player who shot him. After being killed, the player is then respawned (usually in
the same place or quite near) in the scenario. A match ends when the termination
conditions (typically a limit of frags/kills or time) are reached.

In order to aid players to succeed in the match, some elements appear period-
ically in the arena: weapons (with limited ammunition, and an associated power)
to defeat the enemies , and items, that provides the player with some advantages,
such as extra health, high jump, invisibility or ammunition, for instance.

Dead Match mode is usually played by a number of players/bots up to 32 in
the recent games of the series, but there is a very interesting variation; the 1 vs
1 Death Match battle. It is considered in the official competitions of UT2K4 for
human players and presents some specific rules and constraints: there are some
items forbidden (U-Damage), weapons are not respawned, and the match runs
for 15 minutes, not for a number of frags (number of enemies killed).

3 State of the Art

In the nineties, bots started to be widely used in FPSs, when Quake� became
the most successful game in including user-created autonomous characters. It
presented not only the option of playing against machine-controlled bots, but

3

also the possibility to modify them (just in appearance or in a few other aspects),
or create new ones by means of a programming language named QuakeC, which
unfortunately was strictly limited and hard-constrained.

Unreal� series appeared some years later, being (as aforementioned) the first
game in including an easy programming environment and a more powerful lan-
guage, thus plenty of bots were developed (just a few applying metaheuristics
or complex AI techniques), and most of these bots were based on predefined
hard-coded scripts.

One of the most fertile areas inside computer games and AI, is devoted to get
improvements on some components of the characters’ AI. These studies appeared
more than a decade ago We started our research in this field in 2001, publishing
our results in national conferences [3] (in Spanish). We applied a Genetic Algo-
rithm to improve the parameters in the bots AI core (as later other authors did
[11]), and to change the way of controlling the bots by automatically redefining,
by means of Genetic Programming (GP), the standard set of rules of the main
states. Several other evolutionary approaches have been published, such as [12],
where evolution and co-evolution techniques have been applied, [7] which applies
an evolutionary rule-based system, or the multi-objective approach presented in
[9] which evolves different specialised bots. The two latter have been developed
inside the Unreal Tournament� 2004 environment (UT2K4).

Also in the first years, studies involving other techniques arose, such as [13],
where the authors used self-organizing maps and multilayer perceptrons, or as
[14], which applied machine learning, to achieve in both cases human-like be-
haviour and strategies, in Quake� 2 and 3 games respectively. Recent studies
related to computational intelligence (a branch of the AI) , are based on bots
controlled by neural networks (NNs). For instance, the authors in [15] train
NNs by reinforcement learning, and Schrum et al. [16] evolve NNs searching for
multimodal behaviour in bots.

The design of human-like bots (try to imitate humans’ behaviour) is an in-
teresting research line which has become popular a few years ago in the FPS
scope, and specifically inside UT2K4 series due to the international Botprize
competition [17], which searches for the ‘most human’ bot. Several papers have
been published regarding this area, such as the work by Soni and Hingston [6],
in which the authors use a NN to train a bot, based in recorded data of hu-
man plays, for playing UT2K4 as a human. Schrum et al. [18] applied a similar
strategy, relying in human records of matches in the same game to support the
multiobjective evolution of a NN. This is evolved to get the best performance
and skilled actions, but the bot humanity is corrected, mainly regarding the
navigation capability, by means of the human data. There are other approaches
such as [19] which is based in reinforcement learning and self-organizing NN,
or [20] in which the authors model a part of the brain workspace and neural
interactions (through NN).

Our work is enclosed in this scope, however it presents the design of a human-
like bot created by modelling its AI relying in the knowledge of a human expert
player. It presents a novel state-based approach, which considers main and sec-

4

ondary states, and it also deeply describes the AI engine workflow, and the
realistic (from the human point of view) use of a database for ‘learning’ the
arenas.

4 UT2K4 Expert Bot

The design of the expert bot (E-Bot) AI is based on the knowledge of an ex-
pert (human) player, Me$$!@h, who belongs to the best Spanish UT2K4 clan,
Trauma Reactor (dRâ), and has participated in some European championships.
He is one of the authors of the paper and has designed and implemented the
main work flow of the bot’s behaviour. As a summary, E-Bot is implemented
considering hierarchical states (primary and secondary), a set of rules to decide
the correspondent states, and a (simple) database. In the following sections all
these terms will be described, starting with a summarised expert analysis of the
main elements in the game.

It is important to point out that we have considered the rules of the offi-
cial championships then, as stated, weapons are not respawned, there are some
forbidden items, and there is a time limit per match instead a number of frags
limit.

4.1 Expert knowledge

The items and weapons are critically valuable in a 1 vs 1 Death Match, since
they could mean the difference between win or lose against an opponent. It is
even more important to consider the respawn timing of each of them, i.e. the
time it takes to appear again once an item has been picked (weapons are not
respawned). The importance grows in this mode since if one player picks one item
or weapon, she prevents the opponent for profiting it (while she does, of course).
Expert players must control this time in order to move to a known respawn area
in the moment an item appears. These conditions (timing and locations) depend
on the map, which the player should know in advance.

The following list describes the main items to consider:

– Super Shield : the most important item in 1 vs 1 matches. It gives the player
100 shield points (the maximum is 150).

– Small Shield : similar to previous one but it gives 50 shield points.
– Health Pack : gives 25 health points. It just can be used if the player’s health

is lower than 100.
– Health Vial : gives 5 health points. This can be always used until the player

reaches 199 health points.
– Adrenaline: gives 5 adrenaline points. If the player reaches 100 of these

points, she can obtain a reward in a limited time, such as:

• Invisibility: the player cannot be seen.
• Berserker: faster shots.
• Speed: faster movement.

5

• Booster: player’s health and shield is regenerated.

– Ammo: gives ammunition for a specific weapon. There is a different item per
weapon.

Weapons in UT2K4 have been ‘carefully’ designed to be all of them equally
useful and important (as a difference to other games), so there is no one abso-
lutely better than the rest. Every weapon has a perfect moment to be used and
take advantage over other weapons. The choice of this moment is an expert deci-
sion that depends on several factors such as the player’s and enemy’s health, the
distance to enemy or the height/level where she is placed. The list of weapons
along with their utility is summarised in Table 1.

Table 1. UT2K4 Weapons.

Useful for/when Main shot Secondary shot
Shield Gun retreat and protection, can damage enemy, shield for reducing

player’s health low impulse for jump the received damage
Assault Rifle hidden enemy known fire shot, parabolic launch of grenade

low damage
Link Gun enemy tries to escape, energy balls in straight direction links the enemy to the ground

covering an area
Bio Rifle surprising the enemy, viscous balls which glue to floor charge,

enemy’s health is higher and walls, lightly damage to enemy big ball which could kill
than ours who moves close to them the enemy if he is close

Minigun enemy’s health is low, very fast small bullets slow big bullets
medium/close distance

Rocket Launcher medium distance one rocket, several rockets,
high damage on impact spam shots

Flak Cannon enemy is on different level burst of bullets, parabolic ball
close distance

Shock Rifle all distances, energy laser energy ball which can explode,
very versatile high damage

Lightning Gun far distances sniper rifle sniper sight

The movement is another key factor in UT2K4, since it could mean the differ-
ence between win or lose. Players usually move jumping, in order to avoid being
shot easily. This is a problem of our approach because the Pogamut movement
module does not implement the jump.

4.2 Database

When a human player starts playing in a map unknown to him, it is usual to take
some turns to investigate/analyse the scenario and ‘learn’ where the important
things are, i.e. mainly weapons and items, but also advantageous positions and
hiding places.

This behaviour has been implemented in the expert bot by means of a simple
database. It features a single table, which has as fields:

– Unreal ID : unique identification of an item in Pogamut.
– Type: health, shield, ammo, or weapon, among others.
– Name: for instance Flak Cannon, Small Shield or Mini Health.
– Map: name of the map where the item is placed.

6

The initial idea was to include lots of information, such as respawn points,
usual paths, heat zones, last plays or moves, which will imply a high level of
knowledge for the bot, but also a high computational cost when the it would
have to interpret and use all this data. Since the bot must react in real-time,
we decided (for this initial version) to store just the most important and use-
ful information. To this end we performed several test matches using different
combinations of these data. Finally we concluded that the most relevant data to
record and recover later were the described above.

The most important field is Unreal ID, because Pogamut offers information
about it, including its location. It is important to note that the table is filled
with the information about the items that the bot discovers while it is moving
across the map (searching for enemies or just exploring to learn). There are no
records about items not being seen by the bot, although it could be possible in
Pogamut (this would be a trick).

This database has been designed and implemented using SQLite, due to its
light ‘weight’, simplicity and portability. It just consists in a file which we can
move together with the bot code from one PC to another one. It will be extended
in future versions.

4.3 AI work flow

The use of Pogamut implies we cannot consider the FSM defined in the UT2K4
bot’s AI, thus, a complete AI engine must be designed and implemented. Poga-
mut offers some high-level functions which we have profited, such as basic navi-
gation from point to point in a map. As commented in the introduction section,
Pogamut offers to the user sensory information that the bot perceives during
the match. To this end the bot can implement the so-called listeners, which are
triggers that the programmer defines in advance; when an event related to this
trigger happens, the bot performs the associated actions.

The main idea in E-Bot AI module is the consideration of two levels of states:
primary and secondary. The first ones correspond to general actions to perform,
while the latter are devoted to perform additional tasks within the main action
flow. For instance, the bot can decide to attack the enemy, but if its health is
low also search for any health item.

The primary states descriptions are:

– Attack : the enemy is in sight. The bot moves towards him, shooting with its
best weapon and avoiding opponent’s shots. Otherwise, the bot moves side
to side (in a pendular movement).

– Hunt : the bot tries to hunt the enemy. If he is in sight, it pursues him;
otherwise the bot infers its position considering the noise that the enemy
does.

– Retreat : the bot tries to escape from the enemy. If he is in sight, the bot moves
facing him, avoiding his shots and using the shield weapon (if possible).
Otherwise the bot shoots at him while it escapes. If the enemy’s position is
not known, the bot infers it hearing at the noises he produces and moves far
from them.

7

– Greedy : the bot moves around the map picking the items it needs. The bot
knows where they are if it has been previously in the map and has stored
its position in the database. If the enemy is in sight, the bot tries to defend
itself while it picks the items.

– Camp: the bot waits for the enemy in a static position.

The secondary states are only devoted to change the movement of the bot:

– Defensive Profile: the bot tries to escape from the enemy.
– Offensive Profile: the bot moves towards the enemy.
– Pickup Weapon: the bot picks all the weapons it founds.
– Pickup Ammo: the bot picks all the ammunition it founds.
– Pickup Health: the bot picks all the health items it founds.
– Critical Health: the bot moves towards the closest health item it knows (using

the database).
– Critical Weaponry : the bot moves towards the closest weapon it knows (using

the database).

The choice of the primary state is performed by the AI engine following the
flow chart shown in Figure 1. The Camp state is not included because it is

Fig. 1. Primary States selection flow chart

a special state with very particular conditions. The comparisons and decisions
required to choose the state are quite complex, because they consider several
factors and situations that the human expert knows. For instance, the compari-
son between weapons depends on several parameters and weights, because of the

8

existent balance between the power and usefulness of all of them, which could
mean that a weapon is the best in a specific situation (different levels, hidden
opponent, close or far enemy), but it could be the worse on a different position.

The AI engine (composed by a huge system of rules) chooses the primary
state at a time, but while the bot is performing the actions associated to it,
the engine continues checking conditions (for instance the timing of every item),
receiving sensory information, or checking the bot status, for instance. This way,
a secondary state can also be set. However the engine can stop and change, at any
time, both the primary and/or the secondary state, depending on the conditions,
received information and status, giving an extra ‘flexibility’ level which a FSM
usually do not offer.

As a general summary, the bot tends to be defensive if its health is lower
than the enemy’s, unless the latter has a critical health level, so the bot will
attack him to win a frag. In similar health conditions the attitude depends on
the weaponry (in comparison with the enemy’s weapons). If the bot’s health is
good, it is quite aggressive. However, there are several conditions and situations
considered which could change the states and actions to perform. For example,
the difference in height (levels). The E-Bot general flow chart can be seen in
Figure 2.

Fig. 2. E-Bot general flow chart. The route planner controls the navigation around
the map, while the raycasting controller traces vision lines for avoiding obstacles and
seeing enemies.

9

The source code of E-Bot is available under a GPL license at
https://github.com/franaisa/ExpertAgent.

5 E-Bot Results

In order to test the expert bot some experiments has been conducted. The first
consists in launching four different game matches in the 1 vs 1 - Death Match
mode, having as players a game standard bot in the hardest difficulty (StdBot),
and our expert bot (E-Bot).

Two different arenas have been considered, namely DM-Idoma and DM-
Ironic, since they are two of the most famous maps, used in competitions and
with a design that offers almost any possible fighting situation: different levels,
hidden zones, viewpoints and camping areas, etc.

The bots have been fighting following the commented championship rules (as
E-Bot was designed) along 15 minutes. The results of every match as well as the
average in each map are shown in Table 2.

Table 2. Scores (number of frags) of the test fights between E-Bot and a Standard
UT2K4 bot in the hardest difficulty (StdBot).

Map E-Bot StdBot

17 6
DM-Ironic 22 8

19 9

Average 19.33 7.67

Map E-Bot StdBot

23 14
DM-Idoma 20 9

25 8

Average 22.67 10.33

As it can be seen E-Bot outperforms the standard UT2K4 bot in all the
matches, even in the hardest difficulty level, which is a true challenge for a
medium level human player. This leads us to conclude that the expert bot has
been successfully designed and implemented.

As an additional test, our expert human player fought some matches against
E-Bot, always beating it. It is an expected result, since this player is one of
the best in Spain. Thus, we have also proved the value of the expert bot ver-
sus four medium level human players (they play frequently but they are ‘non-
professional’). One of them lost all the matches against the bot, and the rest
had serious difficulties to beat E-Bot, yielding a considerable amount of frags in
the matches, so it could be considered as high-level enemy.

6 Conclusions and Future Work

In this work, the design of a human-like bot for the First Person Shooter game
Unreal Tournament� 2004 (UT2K4) has been described. It models the expert
knowledge of a Spanish high-level player so, its has been named Expert-Bot
(E-Bot). Its behaviour is shapes as a finite state machine with two levels of
states (primary and secondary), each of them with an associated priority for
performing actions. This work flow is flexible, so the AI engine can alter or change

10

it depending on the conditions and on the bot’s or enemy’s status. Moreover,
the bot uses a database for ‘learning’ the maps, as a human player would do the
first time she navigates around a new arena. E-bot has been designed for fighting
in 1 vs 1 death match mode, considering the official competition rules.

Some experiments have been conducted, firstly proving that E-Bot outper-
forms the standard UT2K4 bots, even in the hardest difficulty level. Then, a set
of matches against medium-level human players have been performed with quite
good results: one human has been beaten and the rest have had high difficulties
(several frags) to win. The authors consider these results as a success, however
there still remain several points of improvement to create a high competitive
bot. According an expert player’s opinion (one of the authors), E-Bot does not
perform as well as expected (from the behavioural point of view), so it would be
necessary to improve its behaviour rather than its performance in results.

This way, the first line of research could be the improvement of the bot in
its main flaw, the movement, since the implementation which offers Pogamut
does not include jumps, which in fact are basic in an expert control. Thus, the
possibility of jumping must be included in its actions, in order to model a harder
opponent (more difficult to kill at least).

The database complexity could be increased for considering other important
information for the bots, such as respawn points, heat zones, better paths, nav-
igation points. But some additional work should be done in order to deal with
this data in real-time, avoiding a delay in the performance of the bots.

Once the behaviour would be improved, then several researching could be
made with regard to the finite state machines improvement (set of behavioural
states). Following other approaches by the authors, evolutionary computation
algorithms [3, 8] could be used to improve both, the set of behavioural rules
and the set of threshold parameters which, in term, determine which rules are
triggered and so, define the bot’s behaviour.

Finally, another research line could be the adaptation or optimisation of E-
Bot for multiplayer and team modes, which are so far the most famous among
the players.

Acknowledgements

This paper has been funded in part by projects P08-TIC-03903 (Andalusian
Regional Government), TIN2011-28627-C04-02 (Spanish Ministry of Science and
Innovation), and project 83 (CANUBE) awarded by the CEI-BioTIC UGR.

References

1. WEB: (Gamebots project) http://gamebots.sourceforge.net/.
2. WEB: (Pogamut 3 project) http://pogamut.cuni.cz/main/tiki-index.php.
3. Montoya, R., Mora, A., Merelo, J.J.: Evolución nativa de personajes de juegos de

ordenador. In et al., E.A., ed.: Actas primer congreso español algoritmos evolutivos,
AEB’02, Universidad de Extremadura (2002) 212–219

11

4. Jacobs, S., Ferrein, A., Lakemeyer, G.: Controlling unreal tournament 2004 bots
with the logic-based action language golog. In: Proceedings of the First Artificial
Intelligence and Interactive Digital Entertainment Conference. (2005)

5. Karpov, I., D’Silva, T., Varrichio, C., Stanley, K.O., Miikkulainen, R.: Integration
and evaluation of exploration-based learning in games. In Louis, S.J., Kendall, G.,
eds.: CIG, IEEE (2006) 39–44

6. Soni, B., Hingston, P.: Bots trained to play like a human are more fun. In: IEEE
International Joint Conference on Neural Networks, IJCNN’08. (2008) 363–369

7. Small, R., Bates-Congdon, C.: Agent Smith: Towards an evolutionary rule-based
agent for interactive dynamic games. In: IEEE Congress on Evolutionary Compu-
tation 2009 (CEC’09). (2009) 660–666

8. Mora, A.M., Montoya, R., Merelo, J.J., Garćıa-Sánchez, P., Castillo, P.A., Laredo,
J.L.J., Mart́ınez, A., Esparcia, A.I.: Evolving bot AI in Unreal. In et al., C.D.C.,
ed.: Applications of Evolutionary Computing, Part I. Volume 6024 of LNCS.,
Springer (2010) 170–179

9. Esparcia-Alcázar, A.I., Mart́ınez-Garćıa, A., Mora, A.M., Merelo, J.J., Garćıa-
Sánchez, P.: Genetic evolution of fuzzy finite state machines to control bots in a
first-person shooter game. In Pelikan, M., Branke, J., eds.: GECCO, ACM (2010)
829–830

10. Booth, T.L.: Sequential Machines and Automata Theory. 1st edn. John Wiley and
Sons, Inc., New York (1967)

11. Cole, N., Louis, S.J., Miles, C.: Using a genetic algorithm to tune first-person
shooter bots. In: Proceedings of the IEEE Congress on Evolutionary Computation
2004. (2004) 139–145

12. Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of human-
competitive agents in modern computer games. In: IEEE World Congress on
Computational Intelligence 2006 (WCCI’06). (2006) 777–784

13. Thurau, C., Bauckhage, C., Sagerer, G.: Combining self organizing maps and
multilayer perceptrons to learn bot-behaviour for a commercial game. In Mehdi,
Q.H., Gough, N.E., Natkine, S., eds.: GAME-ON, EUROSIS (2003) 119–123

14. Zanetti, S., Rhalibi, A.E.: Machine learning techniques for FPS in Q3. In: ACE
’04: Proceedings of the 2004 ACM SIGCHI International Conference on Advances
in computer entertainment technology, New York, NY, USA, ACM (2004) 239–244

15. Cho, B.H., Jung, S.H., Seong, Y.R., Oh, H.R.: Exploiting intelligence in fighting
action games using neural networks. IEICE - Trans. Inf. Syst. E89-D(3) (2006)
1249–1256

16. Schrum, J., Miikkulainen, R.: Evolving multi-modal behavior in NPCs. In: Com-
putational Intelligence and Games, 2009. CIG 2009. IEEE Symposium On. (2009)
325–332

17. 2K-Games: The 2k botprize competition (2012) http://www.botprize.org.
18. Schrum, J., Karpov, I.V., Miikkulainen, R.: Ut2̂: Human-like behavior via neu-

roevolution of combat behavior and replay of human traces. In: Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG 2011), Seoul,
South Korea, IEEE (2011) 329–336

19. Wang, D., Subagdja, B., Tan, A.H., Ng, G.W.: Creating human-like autonomous
players in real-time first person shooter computer games. In: Proceedings of
the 21st Annual Conference on Innovative Applications of Artificial Intelligence
(IAAI’09), Pasadena, USA (2009) 173–178

20. Fountas, Z., Gamez, D., Fidjeland, A.: A neuronal global workspace for human-like
control of a computer game character. In Cho, S.B., Lucas, S.M., Hingston, P.,
eds.: CIG, IEEE (2011) 350–357

12

Domain Modeling as a Contract between
Game Designers and Programmers ?

David Llansó, Pedro Pablo Gómez-Martı́n,
Marco Antonio Gómez-Martı́n and Pedro A. González-Calero

Dep. Ingenierı́a del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

email: {llanso,pedrop,marcoa,pedro}@fdi.ucm.es

Abstract. Collaboration between programmers and designers is a crucial prob-
lem in game development. Designers decide what need to be done and program-
mers decide what can be done, and they need to collaborate in order to produce
the best possible experience for the player. In this paper we present a method-
ology that alleviates this problem by putting a declarative model of the game
domain as the contract between programmers and designers.

1 Introduction

Game development is nearly an art, where new ideas must be completely implemented
and tested to be sure that they are fun to play. Trial and error of new game concepts is
needed, what requires an elaborated software architecture that provides the needed flex-
ibility and change tolerance. In addition, game development requires the collaboration
of artists that picture the world, programmers that make the world work, and designers
that create a game out of the visuals and dynamics of the virtual world. Collaboration
between programmers and designers is specially important and, at the same time, spe-
cially difficult. Designers decide what need to be done and programmers decide what
can be done. A fluent and constant communication between designers and programmers
is needed, where both know the needs and objectives of the others.

In order to facilitate the collaboration between programmers and designers in game
development, we propose a computer-aided methodology that involves both design-
ers and programmers, and is based on two main ideas: 1. put a declarative model of
the game domain as the contract between programmers and designers, and let design-
ers formalize the elements of the game that programmers must develop, and 2. use a
component-based software architecture, instantiated as an elaboration of the game do-
main that connects the declarative model with actual code.

With the purpose of supporting such methodology we have developed an author-
ing tool, Rosette, which supports the authoring of the game domain model and the
elaboration of source code components from the model. In this paper we describe the
methodology in next Section, before going into a brief description of the tool in Sec-
tion 3. Section 4 presents an example game created with the proposed methodology,
and finally, Section 5 concludes the paper.
? Supported by the Spanish Ministry of Science and Education (TIN2009-13692-C03-03)

13

2 Methodology

As a high-level description, the methodology is split in three phases:

– Designers define the game domain from the gameplay point of view, using a rich
knowledge representation.

– Programmers enrich that information adding high-level implementation aspects
that designers could not be aware of.

– Programmers implement all the game functionality in some programming language
and designers distribute entities through the level editor and create character be-
haviours.

Prior to detail each phase, please note that our methodology supports these phases
being reiterated as needed, but this feature is out of the scope of this paper; we will focus
in just one iteration and, for simplicity, we will assume that the game is developed using
a waterfall model.

Game creation begins with designers defining the complete game functionality.
Gameplay is provided by entities (players, enemies, items, and so on) and designers
must agree on all the entity types the game will have and specify them in an ontological
(hierarchical) way.

Entities have a state (position, health, armor, ...) and a set of functionalities (actions
they can do) that must be also specified. Designers provide all this information creating
the complete game domain that constitutes a semantic specification of the gameplay
and becomes a contract between designers and programmers. If any decision endangers
the implementation of the game, programmers must report it before accept this game
domain.

Once they come to an agreement, programmers are in charge of breath life into all
those entities designers have envisioned. They will start using the semantic specification
of the game domain, adding new entities, attributes (state) and actions that, although go
unnoticed from a designer point of view, will be important from the implementation
perspective. Entities are then split into software components that will contain subsets of
the state and functionality that the starting entities had. Component distribution can be
hand-made, or even created using a supporting tool and then fine-tuned as desired.

Once programmers have completely modelled entities and components, the seman-
tic model of the game domain is used to create source code scaffolding for all of
them, adapted to the target platform and underlying technologies. Placeholders mark
the specific points where programmers must write code to implement the components
behaviour. Therefore, they do not have to write all the game logic and component man-
agement layer, but just the code that differs between components. All the code that the
target platform (say Unity3D or a in-house game engine) requires to manage the com-
ponent (usually constructors, attribute declarations, and so on) are machine generated
from the game domain.

Similarly, the semantic model is also used to create files that feed the tools that
game levels designers use to create them. Prefabs (Unity3D) or blueprints/archetypes
information (C++ engines) are generated and become the concrete entity definitions that
can be put into the game levels. They can also be used for the behaviour definition where

14

 Rosette

Domain Modeller

Code Files

public class ICo
 IComponent(){}
 handleMessage(M
 switch(m.

Code Generator

OWL Generator

Jena Semantic Web
Framework

Consistency Checker

Pellet Integrity
Constrain Validator

OWL Files
Component Suggestion

GaLicia (Formal
Concept Analysis)

IDE

G
A
M
E

Level
Editor

, , …

, , …

Game Files

Prefab
 Player Controlle
 Enemy AI Graphic
 Asteroid Col
 Bullet

Fig. 1. General view of the Rosette architecture

structures such as finite state machines or behaviour trees are specified. The knowledge-
rich information of the game domain allows us to detect inconsistencies, such as when
an entity is tried to make an action that it is not supposed to do according to the game
domain [6]. In this way, the game semantic model constitutes a central point of the
process and a verifiable game specification.

3 Rosette

Although our methodology is valuable as-is, its main benefit comes when it is sup-
ported by tools that help in the construction of the game model, code generation, and
consistence checking.

In that sense, we have developed a visual authoring tool called Rosette [2] that fills
this gap. Rosette acts as a central point where designers and programmers come to an
agreement (see figure 1). The tool is aware of these two different roles and presents
different information and options depending on the role of the current user.

Though the current state of the application allows an iterative development, in the
description that follows we will assume that we are using a waterfall model, just as we
did in the previous section.

At the beginning of the development process, Rosette is used by designers. There
they define a kind of conceptual hierarchy of the entities that comprise the game. Rosette
allows adding to every entity a comment that acts as documentation and a set of other
properties. In particular, designers may specify a set of attributes (name, health or
maxSpeed to mention just a few) and a set of actions that the entity can perform (such
as shoot or move). As the entities are organized hierarchically, the inheritance model
applies and therefore the set of attributes and actions that an entity has available also
contains the attributes and actions of all its predecessors in the hierarchy. As an anal-
ogy, we can say that the process is similar to defining a UML class diagram but without
taking into account the peculiarities of programming languages but the game domain

15

itself, and therefore the final result is closer to an ontology than a class diagram (users
at this point are designers not programmers).

The final result of this step may be seen as an specification of the game or, put it in
other way, the contract between designers and programmers, because it specifies the set
of entities that designers assure they will need to build the game levels and, therefore,
the functionality programmers must develop.

The complete game domain (referring both designers’ gameplay aspects and pro-
grammers implementation needs) is stored using OWL, a knowledge-rich representa-
tion that allows inferences and consistence checking. Entity verification allows to detect
errors as soon as possible, instead of let them go down until the final source code and
game execution, when it would be too expensive to solve them.

In the next step, programmers come to scene. Within Rosette, they change the view
and available options to enrich the previous information with other knowledge that may
be needed prior coding. This may even involve creating new entities that designers do
not care about, such as cameras, waypoints or triggers, or populate the hierarchy with
internal entities that will make the development phase easier.

After that, programmers may take a step further using Rosette: split entities into
components. They, as experts, can manually specify the components that the game will
have and then modelling the set of entities on the game domain according to them. The
process is supervised by Rosette, and so, it checks whether the final result is complete,
in the sense of assuring that all the attributes and actions an entity has are covered by
the chosen components for that entity.

Moreover, Rosette may aid in the process of generating components [5, 4]. Instead
of having developers creating the set of components from scratch, Rosette may give
them a initial proposal to begin with. As the fully-fledged domain model allows us to
use reasoning engines, it can be used together with Formal Concept Analysis (FCA)
for extracting an initial set of components. FCA is a mathematical method for deriving
a concept hierarchy from a collection of objects and their properties [1]. This may
be useless in our case, because we do not have a collection of objects but a hand-
made conceptual hierarchy and therefore it may be argued that FCA cannot help in the
process. However this is not entirely true. In short, Rosette converts the game model (a
conceptual hierarchy by itself) in a set of objects and feed them into FCA. The final
result is not the original ontology but a (formal) concept hierarchy where each (formal)
concept represents not one but maybe more than one original concept sharing a set of
properties. Since a component is also a set of properties (actions and attributes) that
may be used by several objects (entities), Rosette uses this (formal) concept hierarchy
to automatically identify a component distribution that will fit the requirements of the
provided entity ontology.

The candidate distribution is shown to the user through the visual interface, where
he has the opportunity of modifying it by merging or splitting components, adding or
removing extra functionality, changing names, etc.

At this point, the modelling phase is over and both designers and programmers start
working independently on their respective tools: level editors and IDEs. In order to as-
sure the integrity between the game domain created within Rosette and levels and code
generated with external tools, Rosette has the capability of integration with two dif-

16

ferent target platforms: the well known Unity3D game engine and an in-house engine
developed by the authors in C++ that is being extensively used in our master degree of
videogames in the Complutense University of Madrid and supported by Rosette to use
it in our classes [3]. So, once designers and programmers agree, the target platform is
selected in Rosette, and it generates the input files for their respective tools. In case of
Unity3D, the project is populated with a prefab per entity and a C# file for every com-
ponent. Prefabs are preconfigured with the set of components specified in the domain
model and the initial values of their attributes (if any). On the other hand, the source
files act as skeletons with hooks where programmers will add the code that performs the
specific actions assigned to the components. By contrast, if the selected target platform
is our in-house game engine, a plethora of C++ files (both header and implementation
files) is created and some XML files are generated containing the list components of
every entity (blueprints) and the default values of their attributes (archetypes). Rosette
has been designed to be extensible in the sense that many other target platforms may be
added without too much effort.

Figure 1 summarizes the process: both designers and programmers use Rosette as
a domain modeller tool. The game model is then used for consistency checking using
OWL and for component suggestion using FCA. When the process is complete, Rosette
code generator creates game files meant to be read by the used level editor and source
files that will be enriched by programmers through IDEs.

The main advantages of Rosette for supporting the methodology are:

– Join point between designers and programmers: instead of having designers writing
game design documents that are hardly read by programmers, Rosette acts as a
union point between them because the model created by designers is the starting
point for programmers work.

– Easy authoring of the game domain: designers are comfortable with hierarchical
(not component-based) domains. Using Rosette, they are able to create the entity
hierarchy enriched with state (attributes) and operations (actions).

– Semantic knowledge stored in a formal domain model: the game domain is trans-
parently stored in a knowledge-rich representation using OWL.

– Automatic component extraction: using Formal Concept Analysis (FCA), Rosette
may be used for suggesting the best component distribution for the entity hierarchy
specified by designers and enriched by programmers [5, 4] and allows manually
fine-tune that components.

– Consistency checking of the game domain: the semantic knowledge allows valida-
tion and automated consistency checking [9]. As an example, Rosette guarantees
that manual changes done by programmers to the component distribution are co-
herent with the game domain [2].

– Code sketches generation: as in Model Driven Architectures (MDA), Rosette boosts
the game development creating big code fragments of the components. This saves
programmers of the boring and error-prone task of creating a lot of component scaf-
folding code. Rosette is platform independent in the sense that its code generator
module is easily extended to incorporate other target platforms different than the
two currently supported, Unity3D and plain C++.

17

Fig. 2. Game to be developed

4 Development example

We have developed a small game (Figure 2) to show the application of the methodology
and the use of Rosette with a practical example. The game we developed consists in a
side scrolling shoot’em-up 2D arcade where the player controls a spacecraft that con-
stantly advances throughout the level but whose movement can be altered by the player
who also shoots bullets to enemies whilst avoiding collision of asteroids. Enemies of
the game are also spacecrafts that move and shoot randomly appearing from the right
side of the screen. Both enemies and the player lose health when collide with bullets or
asteroids. Some of these asteroids are static whilst others move randomly appearing all
of them from the right side of the screen. Finally, there are power ups in the level that
increment ammunition of the player when they are caught.

Designers are responsible for defining the previous game more in depth, determin-
ing the details of the playability. According to our methodology, this means that they
are in charge of creating a hierarchical distribution of entities in Rosette. Figure 3 shows
a possible distribution. Entities are shown in the left-side of the picture. Entities shadow
in grey (GameObject, LevelElement, Bullet, PowerUp and Ship) are important from the
semantic point of view but they will surely not exist as such in the final game; their
main purpose is to enhance the ontology knowledge, but only black entities (Asteroid,
PlayerBullet or Enemy) will be instantiated in the game.

Once designers have decided the different entities of the game, they will also have
to define the state and functionality of every entity in terms of attributes they have and
actions they are able to carry out.

In our running example, designers identified six attributes (such as position, health
or numberOfBullets) and three actions (Move, Shoot and SufferDamage). They are
shown in the middle part of the figure 3.

The right side of this figure also shows the details of the Enemy entity, in terms
of these attributes and actions. Using attributes, the designer specifies that any Enemy
entity will have a state consisting of the number of hits that make the enemy die with
health attribute, the concrete name of the entity with the name attribute, the number
of bullets it has available through numberOfBullets, the position in the level and the

18

Fig. 3. Domain proposed by the designer for the game

speed of its movement. The designer can also set default values to the archetypes of the
entities that will be assigned to all the Enemy entities when added in the level editor (for
example, 3 for health). These values will be editable later in a per instance basis.

On the other hand, designers must also endow entities with functionality and, for
this purpose, they should assign to entities the actions that they can carry out. Contin-
uing with the example, Enemy entities can move through the level with Move actions,
shoot with the Shoot action, reload bullets with the ReloadBullets action and lose health
with SufferDamage.

Both Enemy and Player are very similar entities so their definitions would be almost
the same, with small differences such as the Player is always moving forward through
the level, what means it has to use the constantSpeed attribute that defines the vector
that continuously modifies the position. In traditional developments it would not be easy
to identify the similarities between both entities but with Rosette this fact can be seen
at a glance due to the two of them inherit from Ship.

This domain created by the designers must be accepted by the programmers because
in some way this will be a contract between programmers and designers. If program-
mers detect something critical from the implementation point of view they must com-
municate it to the designers before they accept the domain. In the case of this example,
the domain proposed by the designers does not implies any problem for the implemen-
tation of the functionality so the programmers accept the given domain and are now
responsible of adding all the extra information needed for the implementation of the

19

Fig. 4. Domain completed by the programmer for the game

game. This does not just suppose the addition of the software components but also the
addition of new entities to represent abstract things, new attributes without semantic
interest and possibly new actions that, from the programming point of view, correspond
to messages that entities send and accept in the component-based architecture.

Figure 4 shows the next step of the game development where programmers have
completed the game model given by the designers. In this figure it can be seen that
programmers have added an extra entity to implement the game: Camera. It, obviously,
represents the camera, which is responsible of deciding what must be rendered and will
advance through the level keeping the player on focus.

Attributes have been also extended. A small hierarchy has been created, and new
attributes have been added:

– bulletType: Kind of bullet that is shot. Different entities can shoot different bullets.
– entityType: Identify the type of the entity.
– graphicFile: Determines the resource to be rendered.
– radio: Let collision works with entities of different sizes.
– shootPosition: Relative position where bullets are shot. This way the Shoot func-

tionality can be shared between spaceships with cannons in different positions.

Moreover, programmers added the new SetPosition action/message that modifies the
position of an entity and the Collision message that is sent when two entities collide.

20

Component Attributes Actions Belongs to
AI Enemy, MovingAsteroid

BulletReloader numberOfBullets Enemy

Collider radio SetPosition Asteroid, Enemy, EnemyBullet, Player
MovingAsteroid, PlayerBullet, ShootPU

Controller speed Move Enemy, MovingAsteroid, Player

ConstantSpeed constantSpeed Camera, EnemyBullet, Player, PlayerBullet

Graphic graphicFile SetPosition Asteroid, Enemy, EnemyBullet, Player
MovingAsteroid, PlayerBullet, ShootPU

Health health SufferDamage Enemy, EnemyBullet, Player, PlayerBullet

Shooter bulletType, numberOfBullets ReloadBullets, Shoot Enemy, Player

ScrollCamera Camera

Table 1. Components created by programmers

From the semantic point of view probably these attributes and actions have no sense but
they are totally needed to create reusable software.

Nevertheless, the more relevant task in Rosette for the programmers consists in
distributing the state and functionality of the entities among components. With this aim,
programmers may decide to make the component distribution by hand or they can use
Rosette to obtain a candidate distribution for the current entities described in the domain
and then they can adapt it as desired. Table 1 details the software components resulting
from the final distribution of the state and functionality. An initial distribution was done
using the component suggestion technique of Rosette, and then programmers applied
some modifications that improved future reusability. Specifically, the technique could
not detect some things because of the limited number of entities, but programmers can
improve it using their experience. For example, in our game every renderable object
also accepts collisions so Rosette identified both features as related and encapsulated
them in the same component. However, the programmer, anticipating further steps of the
development, split this component in Graphic and Collider components. This will allow
to have, in later revisions of the game, decorative graphic entities (without collisions)
or invisible entities (just collisions) that react to collision triggering some events or
changing the game experience.

When programmers are pleased with the proposed distribution of the features, the
next step is to take advantage of all the semantic knowledge introduced in Rosette to
automatically generate all the scaffolding code in order to both designers and program-
mers can continue with their work and finish the game.

We have implemented this game in two platforms and programming languages. The
first one was Unity 1 (and C#). The second one was created in C++. We have available
a game skeleton that incorporates a minimal application framework that manages the
main loop of the game, and a graphic server that encapsulates the inner workings of the

1 http://unity3d.com/

21

Ogre render API2. It also had a small logic layer that manages component-based enti-
ties. The logic layer was able to load the description of the entities and the level map
from external files. It, however, had no components, messages and entity descriptions,
so for that reason we had to design the capabilities of every component from scratch
as we have done previously. Rosette could generate the C++ code that is smoothly
integrated within this logic layer. For the rest of the paper we will use the second im-
plementation (C++) to explain the process as it is more complete and requires more
effort.

Continuing with the role of the programmer, Rosette generates a big quantity of
the code related with the management of the game logic that includes the entity man-
agement, the components and the message passing between components. Having these
code assets, the task of the programmers in the game logic is reduced to implement
the real functionality described in Rosette as actions/messages and some technical it-
erative functionality to communicate the logic with other modules such as the graphic,
sound or physics modules. In this concrete example of game development, the 91,5%
of the code related with the components and the message passing was autogenerated by
Rosette what notably reduces the programming effort.

Figure 5 shows an example of what should be the work of the programmer in this
step of the development for a simple action such as shooting. Rosette generates an empty
function in the Shooter component and the code responsible of invoking it when the
entity that contains an instance of this component receives a message of Shoot type. The
programmer should then fill the body of this function where, if the entity has enough
ammunition (numberOfBullet), a new parametrized entity is created (bulletType) in the
corresponding position relative to the entity (shootPosition) and is removed after one
second.

vo id S h o o t e r : : Shoot ()
{

i f (numberOfBu l l e t > 0)
{

C E n t i t y F a c t o r y ∗ e f = C E n t i t y F a c t o r y : : g e t S i n g l e t o n P t r () ;
C E n t i t y ∗ s = ef−> i n s t a n t i a t e (b u l l e t T y p e ,

g e t P o s i t i o n () + s h o o t P o s i t i o n) ;
ef−>d e f e r r e d D e l e t e E n t i t y (s , 1 0 0 0) ;
−−numberOfBu l l e t ;
}

}

Fig. 5. Shoot action.

Although the code assets generated for the programmers are a very important part
of the game content created by Rosette, it also generates other content needed by the
design tools, such as the level editor or AI editors. The generated content includes a

2 http://www.ogre3d.org/

22

description of the entities in terms of attributes populated with default values that is
used by the level editor to allow designers fill the level with instances of the described
entities, allowing them to modify not just the position in the map but also the default
values of the parameters, which were established in Rosette. This is a very simple game
but if we wanted to improve it by adding more complicated behaviours, for example for
final bosses, Rosette would create files describing the entities in function of attributes
and the actions they are able to carry out. This way, AI tools facilitates the creation of
behaviours for specific entities and also detects inconsistencies while designing. Sum-
marizing, in this final step the designers will design the different levels of the game,
making them enjoyable, whilst the programmers finish the implementation of the func-
tionality requested in the previous step.

5 Related Work and Conclusions

Regarding related work in the use of explicit domain modeling for videogames we can
mention the work by Tutenel et al. [7]. In this work they propose the use of an ontology
about landscapes, buildings, and furniture that allows to procedurally generating content
for a videogame. The ontology allows to integrate specialized generators (landscape,
facade, furniture, etc.) to produced the different elements of a 3D environment, which
are semantically coherent. A key difference with the work presented here is that we
concentrate on the creation of behavior for the characters while they generate the static
environment in a game.

The work presented in [8] complements the approach presented here, while we have
detailed the process from the domain model to the source code, they concentrate on the
use of the domain model to support designer tools. They show how the symbolic an-
notation of the environmental elements supports the creation of tools to incorporate
information into the game design and development process. Such annotations can help
to create information-rich interactive worlds, where designers can work with these envi-
ronmental information elements to improve NPC (Non-Player Character) interactions
both with the player and the environment, enhancing interaction, and leading to new
possibilities such as meaningful in-game learning and character portability.

In conclusion, we have presented an initial version of a novel methodology for de-
veloping games in collaboration between programmers and designers, where a declar-
ative model of the game domain is specified by designers and serve as the specification
that programmers must implement. We have shown how this methodology can be sup-
ported by Rosette, both in authoring the domain model and elaborating it into actual
code, for different platforms.

As future work we plan to fully develop the methodology as an iterative process
where agile development is supported, facilitating the evolution of the domain model
as new requirements are defined by designers, and helping programmers to iterate on
the software elaborated from different versions of the domain model. We also plan to
explore the tools and techniques that can exploit a declarative domain model from the
designer point of view, for tasks such as consistency checking of the actual level maps in
a game, scripting NPC behavior, debugging a level by procedurally generating solutions
that can be automatically tested, and managing a library of reusable behaviors.

23

References

1. B. Ganter and R. Wille. Formal concept analysis. Mathematical Foundations, 1997.
2. D. Llansó, M. A. Gómez-Martı́n, P. P. Gómez-Martı́n, and P. A. González-Calero. Explicit

domain modelling in video games. In International Conference on the Foundations of Digital
Games (FDG), Bordeaux, France, June 2011. ACM.

3. D. Llansó, M. A. Gómez-Martı́n, P. P. Gómez-Martı́n, P. A. González-Calero, and M. S. El-
Nasr. Tool-supported iterative learning of component-based software architecture for games.
In International Conference on the Foundations of Digital Games (FDG), Chania, Greek, May
2013.

4. D. Llansó, P. P. Gómez-Martı́n, M. A. Gómez-Martı́n, and P. A. González-Calero. Iterative
software design of computer games through FCA. In Procs. of the 8th International Confer-
ence on Concept Lattices and their Applications (CLA), Nancy, France, October 2011. INRIA
Nancy.

5. D. Llansó, P. P. Gómez-Martı́n, M. A. Gómez-Martı́n, and P. A. González-Calero. Knowledge
guided development of videogames. In Papers from the 2011 AIIDE Workshop on Artificial
Intelligence in the Game Design Process (IDP), Palo Alto, California, USA, October 2011.
AIII Press.

6. A. A. Sánchez-Ruiz, D. Llansó, M. A. Gómez-Martı́n, and P. A. González-Calero. Authoring
behaviour for characters in games reusing abstracted plan traces. In Z. Ruttkay, M. Kipp,
A. Nijholt, and H. Vilhjálmsson, editors, Intelligent Virtual Agents, volume 5773 of Lecture
Notes in Computer Science, pages 56–62. Springer Berlin Heidelberg, 2009.

7. T. Tutenel, R. M. Smelik, R. Lopes, K. J. de Kraker, and R. Bidarra. Generating consistent
buildings: A semantic approach for integrating procedural techniques. IEEE Trans. Comput.
Intellig. and AI in Games, 3(3):274–288, 2011.

8. M. Youngblood, F. W. Heckel, D. H. Hale, and P. N. Dixit. Embedding information into game
worlds to improve interactive intelligence. In P. A. González-Calero and M. A. Gómez-Martı́n,
editors, Artificial Intelligence for Computer Games. Springer, 2011.

9. X. Zhu and Z. Jin. Ontology-based inconsistency management of software requirements spec-
ifications. In P. Vojtáŝ, M. Bieliková, B. Charron-Bost, and O. Sýkora, editors, SOFSEM 2005,
LNCS 3381, pages 340–349. Springer, 2005.

24

Stories from Games: Content and Focalization
Selection in Narrative Composition

Pablo Gervás

Universidad Complutense de Madrid,Spain,
pgervas@sip.ucm.es,

WWW home page: http://nil.fdi.ucm.es

Abstract. Game logs could be exploited as a source for reflection on
user performance, with a view to improvement or simply the additional
entertainment of reminescing. Yet in their raw form they are difficult to
interpret, and sometimes only specific parts of the game are worth re-
viewing. The ability to produce textual narratives that rework these logs
(or the interesting parts of them) as stories could open up this wealth of
data for further use. This paper presents a model of the task of narrative
composition as a set of operations that need to be carried out to obtain
a linear sequence of event descriptions from a set of events that inspire
the narration. As an indicative case study, an initial implementation of
the model is applied to a chess game understood as a formalised set of
events susceptible of story-like interpretations. Operating on simple rep-
resentations of a chess game in algebraic notation, exploratory solutions
for the tasks of content selection are explored based on a fitness function
that aims to reflect some of the qualities that humans may value on a
discourse representation of a story.

1 Introduction

The aftermath of a well-played game usually invites a process of reflection where-
upon certain parts of the game are replayed in the mind (or on a blackboard
or even on video). The purpose is sometimes to understand better a particular
event in the game and sometimes simply to rejoice in it. This process can lead
to improvements in performance, or it can be useful as a teaching aid. On a
similar vein, digital entertainment generates a wealth of information in terms of
traces of user activity in the form of game logs. These logs could be exploited
as a source for reflection on user performance, with a view to improvement or
simply the additional entertainment of reminescing. Yet in their raw form these
logs are difficult to interpret, and reliving them in their original form would be
too time consuming and not homogenously fruitful, as sometimes only specific
parts of the game are worth replaying. The ability to produce textual narratives
that rework these logs (or the interesting parts of them) as stories could open
up this wealth of data for further use.

Automated composition of narratives from data is budding line of research
within computational narratology, but elementary techniques are already avail-
able that can provide an initial approximation to this task [1–5]. The challenge

25

to undertake is to provide a computational model of the traditional concept of
raconteur : someone who can identify something that actually happened, leave
out the boring bits, focus on the interesting ones, and tell it in a way that makes
it entertaining. The task itself can be broken down into several stages:

1. he selects the fragment of real life he wants to tell
2. he filters out the non-relevant parts to obtain his initial material
3. he imposes a certain order on the events that he wants to tell (from here on

he has a narration sequence)
4. he decides where in that sequence to insert the descriptions he intends to

use from his initial material (he now has a sequence that switches between
narration and description)

5. he decides how much of that sequence he can assume that his listeners will
infer without effort from the rest

6. he produces the right form for the remaining sequence

Steps 3 and 4 may be somewhat mixed or carried out in reverse order, de-
pending on the style of the raconteur. Step 5 may be ommited. Step 6 involves
linguistic skills that are a huge problem in themselves.

The present paper attempts to address these challenges from an engineering
point of view: given an exhaustive record of all moves made in a given game, find
a way of telling what happened as a linear sequence that may be later converted
into text, trying to maximize coverage, minimize redundancy, and achieve a
certain natural fluency. Chess has been chosen as an initial case study because it
provides a finite set of characters (pieces), a schematical representation of space
(the board) and time (progressive turns), and a very restricted set of possible
actions. Yet it also allows very elementary interpretations of game situations in
terms of human concepts such as danger, conflict, death, survival, victory or
defeat, which can be seen as interesting building blocks for story construction.

The paper reviews existing models related to the narrative composition task,
describes the proposed computational model, presents the case study for narra-
tion of chess games and finishes with discussion and conclusions.

2 Previous Work

A number of models of related tasks and elements arising from different fields
of research are reviewed in this section to provide background material for the
discussion. Due to the breadth of fields under consideration, exhaustive review
in any one of them is beyond the scope of the paper. An attempt has been made
in each case to gather here the set of elementary concepts in each field that are
relevant for the understanding of the arguments in the paper.

2.1 Narratology

According to many theorists, narrative has two components: what is told (what
narrative is: its content, consisting of events, actions, time and location), and the

26

way it is told (how the narrative is told: arrangement, emphasis / de-emphasis,
magnification / diminution, of any of the elements of the content). These have
been named different ways by different researchers, story and discourse, histoire
and discours, fabula and sujzet. There are alternative analyses that postulate
different subdivions. Even between theories that agree on having just two levels
of analysis there seem to be many subtleties that cast doubt on whether the
same thing is meant by the different words. This presents a serious obstacle
for researchers from the computational field trying to address the treatment of
stories in any form. In order to avoid ambiguity, we will restrict our analysis here
to three levels of conceptual representation of a story, and refer to these as the
story (the complete set of what could be told, organised in chronological order
of occurrence), the plot (what has been chosen to tell, organised in the order in
which it is to be told) and the narrative (the actual way of telling it).

Narratologists, who specialize in the study of narrative, consider the concept
of focalization [6] as the way in which a narrator restricts what he is telling
about a particular scene to what might have been perceived by someone present
in that scene. This may be one of the characters if the scene is told in the
first person, or the narrator himself as if he had been present (if the story is
told in the third person). This has an interesting implication in the fact that,
through focalization, narrative discourse (and thereby the structure of stories)
is influenced by the perception of space: events that take place simultaneously
in different locations that cannot be perceived at the same time (this may be
different cities but also different neighbouring rooms separated by a wall) usually
require different narrative threads.

2.2 Natural Language Generation

The general process of text generation takes place in several stages, during which
the conceptual input is progressively refined by adding information that will
shape the final text [7]. During the initial stages the concepts and messages that
will appear in the final content are decided (content determination) and these
messages are organised into a specific order and structure (discourse planning),
and particular ways of describing each concept where it appears in the discourse
plan are selected (referring expression generation). This results in a version of
the discourse plan where the contents, the structure of the discourse, and the
level of detail of each concept are already fixed. The lexicalization stage that
follows decides which specific words and phrases should be chosen to express
the domain concepts and relations which appear in the messages. A final stage
of surface realization assembles all the relevant pieces into linguistically and
typographically correct text. These tasks can be grouped into three separate sets:
content planning, involving the first two, sentence planning, involving the second
two, and surface realization. An additional task of aggregation is considered,
that involves merging structurally or conceptually related information into more
compact representations (“Tom fled. Bill fled.” to “Tom and Bill fled.” or “the
boy and the girl” to “the children”). Aggregation may take place at different
levels of the pipeline depending on its nature.

27

3 A Computational Model

The type of narrative that we want to address in this paper involves a linear
sequential discourse where only a single event can be told at any given point.
Yet reality is not like that. Events to be reported may have happened simulta-
neously in physically separated locations, and constitute more of a cloud than a
linear sequence, a volume characterised by 4 dimensional space time coordinates.
Composing a narrative for such an input involves drawing a number of linear
pathways through that volume, and then combining these linear pathways (or
a selection thereof) together into a single linear discourse. This type of linear
pathway is sometimes referred to as a narrative thread. From a narratological
point of view, this task can be related to the identification of appropriate focal-
ization decisions for conveying a given material. Focalization, understood as the
decision of which character the narration should follow, and how much of the
environment around him at each point should be conveyed to the reader of the
narrative, divides the perception of reality into individual fibres (one for each
possible focalizer character) that are linear and sequential in nature. For each
character involved in the set of events to be conveyed, a possible focalization
fibre can be drawn.

To provide a preliminary benchmark for the various intuitions outlined in
the rest of the paper the simplest approximation to a case study that could be
conceived is described in this section. Characters will be chess pieces. To model
the way humans tell stories in terms of narrative threads, based on subsets of
the events that can be said to be experienced by a particular character, each
piece is assigned a field of perception corresponding to a N x N square around
the position of the board in which it is standing. The value of N is considered
the range of perception of that particular piece. For a given piece with range of
perception N, all possible partitions of the chess board in N x N squares would be
possible locations in our world model - depending on the positions of characters
on the board. The set of events that we would be considering is the set of all
moves involved in a given game.

A basic software implementation has been written that reads a description of
a chess game in algebraic notation (see Table 1) and builds for it a representation
in terms of threads focalized on a given character assuming a certain range of
perception around him.

Events are triggered by pieces moves. Whenever a piece moves, this consti-
tutes an event for the piece itself, for any other piece captured during the move,
and for any other piece that sees either the full move, the start of the move or
the conclusion of the move.

Fibres for each of the pieces are built by collecting event descriptions for those
moves that they are involved in or they see. The same event may get described
differently in different fibres depending on the extent to which the corresponding
focalizer is involved in it.

28

1. e4 c5 16. Bxe2 Be6
2. Nf3 d6 17. Rfd1 Rfd8
3. d4 cxd4 18. Bc5 Rd5
4. Nxd4 Nf6 19. b4 a5
5. Nc3 g6 20. Bf3 Rxd1+
6. Be2 Bg7 21. Rxd1 e4
7. Be3 O-O 22. Bxe4 Bxc3
8. O-O Nc6 23. Bxc6 Rc8
9. h3 d5 24. b5 Bxa2
10. exd5 Nxd5 25. Bd4 Bb4
11. Nxd5 Qxd5 26. Be5 Be6
12. Bf3 Qc4 27. b6 Rxc6
13. Nxc6 bxc6 28. b7 Rb6
14. c3 e5 29. Rd8+
15. Qe2 Qxe2 1-0

Table 1. Algebraic notation for an example chess game

3.1 Representing the Data

An event is something that happens with a potential for being relevant to a
story. Events occur at a specific location at a given moment of time. They may
have preconditions and postconditions. In order to have a generic representation,
each event is considered to have an associated event description that allows
both a descriptive and a narrative component. The descriptive component of an
event description contains predicates that describe relevant preconditions. The
narrative component of an event describes the action of the event itself, but
it may also contain additional narrative predicates describing the effect of the
action. For instance, if someone moves from one place to another, elements at the
original location may be left behind, and elements in the final location appear.
These are not considered separate events but included in the description of the
moving event.

A fibre is a sequence of events that either involve or are seen by a given
character. It represents a focalized perception of the world. The extent of infor-
mation that is included in the events for a given fibre is defined by the range
of perception that is being considered and by the presence of any obstacles to
perception in the surrounding environment. It may also be affected by the di-
rection in which the focalizer is facing, or where he is focusing his attention. As
these further refinements require advanced authorial decisions, we decide that
the standard representation should include all the information within percep-
tive range, and leave the decision of whether to mention it to a later stage of
composition.

The task of heckling1 involves establishing the range of perception, tracking
the set of all possible characters involved in the events to be narrated, and

1 From the process of extracting a set of fibres from flax or fleece, to be later spun
into yarns.

29

for each character constructing a fibre representation that includes descriptions
of all the events that the character initiates, suffers or perceives. These event
descriptions will appear in the fibre in chronological order.

3.2 A Computational Procedure

From a given game, a large number of fibres, longer or shorter, and at differ-
ent ranges of perception can be produced. Most of them overlap one another,
and most of them will contain descriptions of events that are not interesting in
themselves and not relevant to the overall flow of the game. To select among
them a selection of subsets that might constitute acceptable tellings of the game
we have considered an evolutionary approach. This allows us to concentrate our
effort on the definition of fitness functions that capture desireable qualities of a
good story, both at the domain level and in terms of the structural properties
it should have. We therefore need to define an initial population of fibres, and a
set of operators for crossing and mutating them, using these fitness functions to
rate successive generations. This would constitute an evolutionary approach [8]
to the task of content and focalization selection.

The concept of a draft that holds the current best solution for a given telling
of the game under consideration and which gets progressively modified towards
an optimal solution, is fundamental to the proposed model. The concept of
reviser, a module that operates on a draft to progressively improve it, captures
this concept of progressive modification. The model will operate not on a single
draft but over a population of candidate drafts.

We allow a set of alternatives for the creation of the drafts in the initial
population. To this end we introduce the concept of babbler, a module in charge
of producing an initial draft. By allowing a population of babblers to produce
the initial population, we introduce the possibility of relying on more than one
technology to produce them. Solutions for babblers that have been explored
so far generate a set of single fibre drafts which are then combined into more
complex fibres by subsequent stages of the system.

Drafts need to be evaluated for conformance with the desired qualities for
the telling of the game, and the results of this evaluation need to be taken into
account in any subsequent operations on the draft. The concept of a judge, a
module capable of evaluating partial results according to desired criteria, cap-
tures this idea. The various judges assign scores on specific parameters (designed
to isolate structural properties such as redundancy, coverage, cohesion or overall
interest):

– uniqueness, measures the numbers of events made or seen by the focalizers
of the fibres involved in a telling that are not already covered by some other
fibre in the telling, as a percentage of the total number of narrative predicates
in the yarn (which should correspond to all the events mentioned),

– density measures the ratio between captures and narrative predicates (the
number of narrative predicates that are captures as opposed to just moves),

– coverage, measuring the percentage of moves of the game that are actually
covered by a given telling,

30

– cohesion, measuring the ratio between the number of moves covered by the
longest fibre in a telling and the number of moves covered by the telling (not
necessarily the game, as parts of it may have been lost, and that is measured
elsewhere by the coverage metric),

– number of focalizers, assigning high scores to tellings that have a number of
different focalizer within a specified range (currently set between 2 and 6).

The definition of density is based on the assumption that captures constitute
more emotionally charged events than other moves. An overall score for each
draft is obtained by averaging the value of all individual scores received by the
draft. Weighted combinations may be introduced at later stages if they are seen
to improve the quality of the final results.

Evolutionary approaches rely on a set of cross over and mutation operators
[8]. In our framework, cross over functionality is introduced by mixers and mu-
tation functionality by revisers.

Two types of mixers are considered:

– one that given two different tellings, generates another two in which fibres
ocurring for the same focalizer in both, but with different coverage of the
actual set of events it took part in (either as an active participant or as an
observer),2 have been swapped

– one that given two different tellings produces a single telling that combines
all the significantly different3 fibres found in both

During one generation, each mixer is applied as many times as there are drafts
in the population, and each time it combines two drafts selected at random.

Revisers rely on scores assigned by judges to introduce changes to drafts.
Reviser act as mutator operators, taking an existing draft and producing a new
draft that differs from the original in some way. The set of revisers includes:

– dropping certain fibres from a telling (for each available draft, produce a
new draft by dropping fibres at random with a likelihood of 10 %)

– trimming certain fibres from a telling (for each available draft, produce a
new draft with the same number of fibres but dropping event descriptions
from the original fibre at random with a likelihood of 5 %)

During one generation, each reviser is applied to all the drafts in the popu-
lation.

At the end of each generation, the size of the population has multiplied
significantly. The resulting set of drafts are scored, and only top scoring ones are
allowed onto the next generation. The number of drafts allowed to survive from
each generation is a configuration parameter currently determined empirically.

2 Differences in coverage may arise from the fibre having been trimmed as a result of
revision or by virtue of having been originally constructed based on a different value
for the range of perception.

3 Two fibres are considered significantly different unless the set of events covered by
one subsumes the set of events covered by the other.

31

3.3 Results

Running the system produces a population of drafts that constitute possible al-
ternative ways of telling the story by focusing on one or another set of characters.
With a view to explainig the intuitions behind the described evolutionary set up,
an example of system run with a simple configuration is described below. These
tellings are produced by a combination of a babbler that produces a different
draft for each available fibre, a mixer that combines drafts by merging all their
constituent fibres, and the full set of judges described.

For instance, for the game shown in Table 1, a number of possible tellings
are summarised in Table 2. The top scoring single fibre candidate is draft 6,
telling the story of the game that focuses on the second white pawn using a
range of perception of 3. This is the top scoring draft on coverage (78) that has
a single fibre. This pawn sees much of what happens in the game. It also has a
top score on uniqueness (100), because no one else is reporting the same things.
The overall top performer is draft 114, that tells the game through the eyes of
the fifth black pawn and the left white bishop. The pawn uses a smaller range
of perception (2) than the bishop (3). They achieve a top score on coverage of
96, but get penalised on uniqueness (73), because there is a large number of
events that are reported by both of them (in bold in their list of moves). For
completeness, data for two additional drafts (numbers 97 and 124) are shown,
both with an overall score of 70 but using two and three focalizers respectively.
Maximum coverage (98) is achieved with three focalizers in 124, but uniqueness
drops down to 53, bringing the overall score down. This example shows how
the metrics of the different judges interact to achieve a balance that leads to
successful tellings of the game.

4 Discussion

The proposed system constitutes a computational implementation of two tasks
relevant to narrative compostion: selection of relevant material by filtering out
less relevant information (corresponding to the content determination subtask in
natural language generation pipelines) and determination of appropriate focal-
ization choices (a subject studied by narratology, though usually considered only
during analysis of literary texts in terms of how focalization has been established
by human authors). From the point of view of natural language generation, the
task of content determination for narrative had not to our knowledge been ex-
plored computationally before. From the point of view of narratological theory,
the model as described captures the concept of focalization as a computational
generative task, and relates it closely to the input data, the decision criteria,
and the computational processes being modelled.

4.1 Comparison with Other Narrative Composition Systems

A number of related efforts exist to automatically derive narratives from sport
games [2],[3],[4]. These efforts operate on input data in the form of statistics on

32

Dn Fc Un Cv Ch Dn Os # F # m Piece Pr List of moves

6 50 100 78 100 14 68 1 45 wp2 3 1, 2, 5, 6, 7, 9, 11, 13, 15, 18, 19, 20, 21,
22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57

114 100 73 96 89 10 73 2 55 bp5 2 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21,
22, 24, 25, 26, 28, 30, 31, 32, 35, 36, 39, 40,
42, 43

lwb 3 1, 3, 5, 6, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57

97 100 73 92 73 14 70 2 53 wp7 3 1, 3, 5, 6, 7, 11, 13, 15, 17, 18, 19, 20, 21,
22, 23, 24, 25, 28, 29, 30, 31, 33, 35, 36, 39,
40, 41, 42, 43, 45, 49, 51, 57

lbb 3 2, 4, 6, 8, 12, 14, 16, 18, 19, 20, 21, 22, 24,
25, 26, 28, 32, 34, 35, 36, 37, 39, 40, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57

124 100 53 98 87 13 70 3 56 wp7 3 1, 3, 5, 6, 7, 11, 13, 15, 17, 18, 19, 20, 21,
22, 23, 24, 25, 28, 29, 30, 31, 33, 35, 36, 39,
40, 41, 42, 43, 45, 49, 51, 57

bp6 2 4, 8, 10, 12, 14, 18, 19, 20, 21, 22, 24, 28,
32, 34, 36, 40, 42, 44, 48, 51, 52, 57

lwb 3 1, 3, 5, 6, 7, 9, 11, 13, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57

Table 2. Examples of tellings: draft number (Dn), number of fibres (# F), number of
moves (# m), range of perception of the fibre (Pr), focalizer name (Piece), and scores
for focalizer count (Fc), uniqueness (Un), coverage (Cv), cohesion (Ch), density (Dn)
and overall score (Os).

33

a given game, and produce texts in the manner of newspaper articles covering
similar games. These efforts, for instance, are heavily mediated by the set of data
they start from, which arises from purpose specific abstraction and filtering of
the set of real world events, driven by the purpose of the desired story. Addition-
ally, the choice of news article as target form imposes stylistic choices in terms of
focalization (the stories are not focalized on specific characters) and the rhetor-
ical structure (for instance the need to provide a summary of the game at the
beginning, then review the highlights, then comment on any relevant details).
The input data considered in these cases already involve a severe operation of
abstraction, in the sense that they do not constitute raw perceptions of reality
but purpose-specific abstractions such as statistics on percentage of succesful
attempts, relative number of fouls between opposing teams, or total time that
a team had control of the ball. In such cases, a large portion of the effort of
converting the real life data into story material has already been achieved by
the stage of drawing statistics from the game. As such, they differ greatly from
the type of input data and output text being considered in this paper. For the
model described here, input data would be a complete log of all events that took
place in the game, and the output text would be closer to a multi-character novel
describing the game, or the script of a film telling the story of the game.

The task of narrative composition has also been explicitly addressed by Has-
san et al [1] and Gervás [5]. Hassan et al addressed the task of generating stories
from the logs of a social simulation system. Gervás focused on the task of gen-
erating a natural language rendering of a story extracted from a chess game for
a given set of pieces and with focalization set at a prefixed range of perception
(squares of size 3 were used). An analysis of the differences between these sys-
tems is best carried out in terms of the 6 stages described in section 1 for the
task of a raconteur.

Of those stages, step 1 would correspond to selecting a particular game, or
particular social simulation, and in all cases is already decided in the input re-
ceived by the systems. The system described in the present paper models step
2, corresponding to filtering out the non-relevant parts. This step was not ad-
dressed by Hassan et al [1]. The procedure employed in the present case relies
heavily on the fitness functions implemented in the judges to establish the filter-
ing criteria, though it is the mixers and the revisers that carry out the executive
work of tailoring the drafts. Step 3 (imposing a particular order on events to
be told) is addressed by all three systems, with Gervás [5] being the one that
devotes most effort to it. The present system relies on the solution for step 3
developed in Gervás [5]. This step presents interesting features in the context of
the case study on chess, and is addressed below under 4.2. Step 4 (generating
and inserting descriptions at appropriate places in the narrative sequence) has
so far only been addressed in Gervás [5]. Step 5 (establishing how much of the
intended content can be omitted and left for the reader to infer) requires a rich
model of what the reader knows and has so far been sidestepped by all previous
research efforts. Step 6 (rendering the resulting conceptual discourse as natural
language) was addressed by Hassan et al [1] in terms of template-based NLG and

34

by Gervás [5] with a more refined NLG system that included referring expression
generation, lexical and syntactic choice, and grammar-based surface realization.

4.2 Generalizing beyond Chess

Chess games present the advantage of having very clear temporal and spatial
constraints, and constituting at heart a sketchy representation of one of the
most dramatic settings for human experience: war. In that sense, it provides a
good ground for simple experiments, and it is not intended as a contribution in
itself but as an illustrative example of the operation of the model of sufficient
simplicity to be describable within the size restrictions of a paper such as this.
Two aspects are identified as problematic with the use of chess games as a case
study, one related to the tasks of content selection and focalization choice and
one more related to the task of establishing a sequential order on the narrative
(corresponding to step 3 mentioned in section 1).

First, adequate representation of opportunities and threats in a chess game
involves some serious representational challenges [9]. For more elaborate experi-
ments, the fitness functions employed would have to be refined to better capture
this complexity. Although significant progress may be made on this point, the
effort invested is unlikely to lead to compelling narratives or narratives that
bring insight on the task of narrative composition. It might be more fruitful to
identify richer domains for further case studies, and to apply the engineering
effort to whatever elements are considered of narrative interest in them.

Second, the chronological structure of a chess game is in truth purely sequen-
tial, in contrast with the sets of events that would be considered when narrating
from real life events. This has not been considered a serious obstacle in as much
as focalization breaks up the set of events into separate views corresponding to
different fibres, and the numbering or moves in the game provides a good indi-
cation of relative chronology of events within any given fibre and across fibres.
For these reasons, it is considered advisable to explore further investigation of
the suitability of the model when applied to case studies in other domains that
are richer in terms of their representation of time and space and that may lead
to more compelling narratives with a stronger human interest. The search for
alternative domains is made difficult by the need to obtain for them reliable
records of all events, both relevant and irrelevant to the story that may be told.
Only if this condition is satisfied can the corresponding problem be considered
equivalent to the human task that we want to model.

These two points suggest strongly that logs of video games would be a very
good domain of application, as they satisfy all the described requirements. Sit-
uations and events of interest can be established for each particular game, and
means would have to be found for identifying them computationally. Existing
research on plan recognition [10–12] may be of use in addressing this task. Log-
ging procedures can be defined for the chosen game, to ensure that game events,
both relevant and irrelevant to the story that may be told, get registered.

35

5 Conclusions

The evolutionary solution presented in this paper constitutes a valuable contribu-
tion to the growing corpus of research on narrative composition. The tasks of con-
tent determination and focalization choice in narrative had not been addressed
computationally before. The evolutionary approach provides a breakdown into
subtasks that has lead to interesting insights in terms of specific knowledge-based
operations that need to be carried out during composition. These operations pro-
vide a first computational approximation to decision making about focalization,
as opposed to analysis of how focalization has been configured. These tasks can
also be confortably placed within generally accepted task divisions for natural
language generation. The preliminary implementation for the particular case of
a chess game has shown that a set of possible sequential tellings with acceptable
structural properties can be obtained from a formal log of considerable com-
plexity. This opens the possibilities for addressing richer case studies for more
complex games.

References

1. Hassan, S., León, C., Gervás, P., Hervás, R.: A computer model that generates
biography-like narratives. In: International Joint Workshop on Computational
Creativity. London. (2007)

2. Allen, N.D., Templon, J.R., McNally, P., Birnbaum, L., K.Hammond: Statsmon-
key: A data-driven sports narrative writer. In: Computational Models of Narrative:
AAAI Fall Symposium 2010. (2010)

3. Lareau, F., Dras, M., Dale, R.: Detecting interesting event sequences for sports
reporting. In: Proc. ENLG 2011. (2011) 200–205

4. Bouayad-Agha, N., G.Casamayor, Wanner, L.: Content selection from an ontology-
based knowledge base for the generation of football summaries. In: Proc. ENLG
2011. (2011) 72–81

5. Gervás, P.: From the fleece of fact to narrative yarns: a computational model of
narrative composition. In: Proc. Workshop on Computational Models of Narrative
2012. (2012)

6. Genette, G.: Narrative discourse : an essay in method. Cornell University Press
(1980)

7. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(1989)

9. Collins, G., Birnbaum, L., Krulwich, B., Freed, M.: Plan debugging in an inten-
tional system. In: Proc. IJCAI 1991. (1991) 353–359

10. Fagan, M., Cunningham, P.: Case-based plan recognition in computer games. In:
Proc. of the Fifth ICCBR, Springer (2003) 161–170

11. Ramirez, M., Geffner, H.: Plan recognition as planning. In: Proc. of IJCAI-09.
(2009)

12. Synnaeve, G., Bessière, P.: A Bayesian Model for Plan Recognition in RTS Games
applied to StarCraft. In: Proc. of AIIDE 2011, Springer (2011) 79–84

36

Playability as Measurement of the Interaction
Experience on Entertainment Systems

J. L. González Sánchez, F. L. Gutiérrez Vela
GEDES – Universidad de Granada

joseluisgs@ugr.es and fgutierr@ugr.es

Abstract. Nowadays, video games are the most economically profitable
entertainment industry. The nature of their design means that user experience
factors make design and / or evaluation difficult using traditional methods
commonly used in interactive systems. It is therefore necessary to know how to
apply Playability in order to design, analyse, optimize and adapt it to a player’s
preferences. In this work we present a way to perform UX based on Playability
techniques evaluate the entertainment and the game experience on video games.
The aim is to easily and cost-effectively analyse the different degrees of
Playability within a game and determine how player experience is affected by
different game elements.

Keywords: Computer Science, Video Games, Entertainment Systems, User
Experience, Playability, Hedonic Factors, Emotions.

1 Introduction

Video games are highly interactive systems whose main goal is to entertain users
(players) that interact with them in order to have fun. Nowadays, video games are the
most economically profitable entertainment industry.

User Experience (UX) is understood as a set of sensations, feelings or emotional
responses that occur when users interact with the system. UX focuses more on the
subjective aspect of the interaction process, and goes beyond the traditional study of
skills and cognitive processes of users and their rational behaviour when interacting
with computers [1, 2]. Due to the nature and design of videogames, user experience
should be enriched by recreational, emotional, cultural, and other subjective factors
that make analysis and evaluation difficult using traditional methods commonly used
in interactive systems. Player eXperience (PX or User Experience in Video Games)
depends not only on the product itself, but also on the user and the situation in which
he or she uses the product. Players cannot be designed. Players are different. User
Experience (UX) should be taken into account throughout product development
(hardware or software), so as to achieve the optimum experience for the player. The
current importance of video games and entertainment systems in society justifies the
need for models that characterize the overall experience, and mechanisms for
designing and analysing the Experience throughout the video game development
process become a must.

The purpose of this work is to present Playability as measurement of the interactive
experience with video games and entertainment systems, and uses it for the evaluation
of the enjoyment and entertainment on interaction systems. This work reflects the
importance of a Playability to evaluate the final experience for developing more

37

efficient and successful products in terms of entertainment and amusement, a crucial
factor to improve the final satisfaction of users. In first second point, we discuss about
the User Experience in Video Game, especially how emotions and cross-cultural
factors can affect to the overall experience in games. Then, we present a Playability to
characterize the User Experience in video games. Later, we apply the Playability
Model in a Video Game Evaluation to analyse the experience. Finally, we discuss
about our proposals in conclusion and future works related with this chapter will be
presented.

2 User Experience in Video Games and Entertainment Systems

Analysing the quality of the experience on video game or entertainment systems
purely in terms of its Usability is not sufficient; it is important to consider not only
functional values but also a set of specific non-functional values, given the hedonic
properties of video games: emotional response, social and cultural background, etc.
User Experience in video games is enriched by the playful nature of game systems,
together with the characteristics that give identity to the game, such as game rules,
goals, challenges, rewards, GUI, dialog systems, etc., which are unique to each game
and make the experience with every game different for each player, who will also
have different experiences from one another. In the field of video games, the main
goal is much more indefinite and subjective than in other interactive systems such us
Desktop Systems: to feel good and have fun, in other words: ‘entertainment’.

The property that characterizes the Player Experience or User Experience in
entertainment systems is commonly called Playability and it can be used in the design
process or at the evaluation stage to ascertain the experience that players feel when
playing a video game. Playability is a term used in the design and analysis of video
games that describes the quality of a video game in terms of its rules, mechanics,
goals, and design. It refers to all the experiences that a player may feel when
interacting with a game system. Playability is a key factor in the success of the video
game due to its ability to ensure that the game engages, motivates and entertains the
player during playing time. The most important references on playability are
compiled in [3, 4, 5, 6]. Playability is a live topic in the scientific community; it has
been studied from different points of view and with different objectives. In this
section, we briefly describe the most representative works for each specific line of
research.

It is worth mentioning the work of Rollings [7] which contains three key elements
for identifying the playability of a videogame. These are: Core Mechanics,
Storytelling & Narrative and Interactivity: set of elements that the player can see, hear
and interact with in the virtual world. For Swink [8], playability is based on the
combination and proper structuring of the game elements during the play-time.
Furthermore, Akihiro Saito [9] indicates that the player experience is identified by
“Gamenics”: the quality of play, the quality of the platform on which a game runs and
the mechanics of the game (GAme + MEchanics + electroNICS). Lazzaro [10]
propose that one of the secrets of playability is the management of emotions and the

38

motivation of the player. Regarding “Flow” Theories, in [11] connected “a collection
of criteria with which to evaluate a product’s gameplay of interaction”.

Other works on Playability and player experience define playability as “the
usability in the context of video games”, in which usability is understood as a
traditional property of the UX. One of the most referenced works in this area is
Federoff’s proposal [12]. Following the line of heuristics and evaluation criteria of
playability and usability in video games are the works by [13, 14]. Some interesting
works focus more on how to evaluate the player experience applying biometric
techniques [15] and gameplay metrics [16].

Björk’s proposal offers a set of patterns and guidelines to game developers to
increase the usability (playability) in video games [17]. But, it is important to readapt
the experience to the user cross-cultural and location issues [18]; or promotes the
social game implementing better mechanics for the collaboration among players [19].

Another important research line is the one which uses questionnaires to assess the
user experience. The most significant is Game Experience Questionnaire (GEQ) [20,
21]. Moreover, it is possible to find style guides that promote the playability and
accessibility in video games [22, 23]. Playability is a crucial factor, because to have
the opportunity of combine accessibility techniques to properties to characterize and
improve the entertainment of the player with the video game.

3 Playability Model to Characterize the Experience

As previously mentioned, the User Experience is characterized by two main points of
view: process of use and product quality development. These are enhanced and
enriched by the user’s emotional reactions, and the perception of non-instrumental
qualities. Playability is based on Usability in video games, but in the context of video
games it goes much further. Furthermore, Playability is not limited to the degree of
‘fun’ or ‘entertainment’ experienced when playing a game. Although these are
primary objectives, they are very subjective concepts. It entails extending and
formally completing the characteristics of User Experience with players’ dimensions
using a broad set of attributes and properties in order to measure the Player
Experience, see Fig. 1. There is a clear need for a common or unambiguous definition
of playability, attributes to help characterize the player experience, properties to
measure the development process of the video game, and mechanisms to associate the
impact/influence of each video game element in the player experience. We consider
this a significant lack, since the different definitions of playability require different
criteria to measure it: there are no universals.

In this work we present a playability model to characterize PX in video games,
introducing the notion of facets of playability, which integrates methodological
approaches into the game development process. To achieve the best player
experience, they propose a set of attributes to characterize the playability. Playability
is defined as ‘a set of properties that describe the Player Experience using a specific
game system whose main objective is to provide enjoyment and entertainment, by
being credible and satisfying, when the player plays alone or in company’ [6].

39

Playability describes the Player Experience using the following attributes and
properties:

Fig. 1. Playability as characterisation and measurement of the interaction experience

• Satisfaction: It is defined as the gratification or pleasure derived from playing a
complete video game or from some aspect of it such as mechanics, graphics, user
interface, story, and so on. Satisfaction is a highly subjective attribute that is by
definition difficult to measure as it depends on the preferences of each player,
which in turn influence the satisfaction derived from specific elements of the
game (characters, virtual world, and challenges).

• Learnability: It is defined as the player’s capacity to understand and master the
game’s system and mechanics (objectives, rules, how to interact with the video
game, and so on). Desktop Systems try to minimize the learning effort, but in
video games we can play with the ‘learning curve’ according to the nature of the
game. For example, on the one hand, a game may demand a high initial skill level
before playing, or it may put the player on a steep learning curve during the first
phases of the game, to help them understand and master all the game’s rules and
resources so that they can use them virtually from the outset. On the other hand,
players can learn step-by-step in a guided fashion when they need to develop a
particular ability in the video game.

• Effectiveness: It is defined as the time and resources necessary to offer players
an entertaining experience whilst they achieve the game’s various objectives and
reach the final goal. An ‘Effective’ video game is able to engage the player’s
attention from the outset through to the very end of the game. Effectiveness can
be analysed as the correct use of the challenges by the player throughout the
game, the correct structuring of the objectives of the game and/or the best
adaptation of the controls to the actions in the game.

• Immersion: It is defined as the capacity of the video game contents to be
believable, such that the player becomes directly involved in the virtual game
world. This intense involvement means that the player effectively becomes part
of the virtual world, interacting with it and with the laws and rules that
characterize it. A video game has a good Immersion level when it achieves a
balance between the challenges it presents and the player abilities necessary to
overcome them.

40

• Motivation: This is defined as the set of game characteristics that prompt a player
to realize specific actions and continue undertaking them until they are
completed. To achieve a high degree of Motivation, the game should offer a set
of resources to ensure the player’s perseverance in the actions performed to
overcome challenges. By ‘resources’ we mean different elements to ensure
positive behaviour in the interpretation of the game process, thereby focusing the
player on the proposed challenges and their respective rewards, showing the
relevance of the objectives to be achieved, and encouraging the player’s
confidence and pleasure in meeting and achieving challenges.

• Emotion: This refers to the player’s involuntary impulse in response to the
stimulus of the video game that induces feelings or a chain reaction of automatic
behaviours. The use of Emotion in video games helps achieve an optimum Player
Experience by leading players to enter different emotional states.

• Socialization: It is defined as the set of game attributes, elements, and resources
that promote the social dimension of the game experience in a group scenario.
This kind of collective experience makes players appreciate the game in a
different way, thanks to the relationships that are established with other players
(or with other characters from the game). Game Socialization allows players to
have a totally different game experience when they play with others and it
promotes new social relationships thanks to interaction among players.
Socialization is also at work in the connections that players make with the
characters of the video game. Examples of this might include: choosing a
character to relate to or to share something with; interacting with characters to
obtain information, ask for help, or negotiate for some items; and how our
influence on other characters may benefit, or not, the achievement of particular
objectives. To promote the ‘social factor’, new shared challenges need to be
developed that help players join in with and assimilate the new game dynamic,
creating a set of collective emotions where players (or characters) encourage and
motivate themselves and each other to overcome collective challenges.

Playability analysis is a very complex process due to the different perspectives that

we can use to analyse the various parts of a video game architecture. In [6] a
classification of these perspectives is based on six Facets of Playability. Each facet
allows us to identify the different attributes and properties of Playability that are
affected by the different elements of video game architecture [7]. These Facets are:
• Intrinsic Playability: this is the Playability inherent in the nature of the video

game itself and how it is presented to the player. It is closely related to Gameplay
design and Game Mechanic.

• Mechanical Playability: this is the facet related to the quality of the video game
as a software system. It is associated with the Game Engine.

• Interactive Playability: this facet is associated with player interaction and video
game user interface development. This aspect of Playability is strongly connected
to the Game Interface.

• Artistic Playability: this facet relates to the quality of the artistic and aesthetic
rendering in the game elements and how these elements are executed in the video
game.

41

• Intrapersonal Playability or Personal Playability: This refers to the individual
outlook, perceptions and feelings that the video game produces in each player
when they play, and as such has a high subjective value.

• Interpersonal Playability or Social Playability: This refers to the feelings and
perceptions of users, and the group awareness that arises when a game is played
in company, be it in a competitive, cooperative or collaborative way.

The overall Playability of a video game, then, is the sum total of values across all

attributes in the different Facets of Playability. It is crucial to optimise Playability
across the different facets in order to guarantee the best Player Experience.

4 Video Game Test and Experience Evaluation based on Playability

We recommend evaluating and testing the Playability and Player Experience during
the entire development process in order to ensure the quality of
Playability/Experience in every playable video game element or game content in the
final product. When testing or evaluating experience, a Playability Model is used to
achieve the following objectives: analyse the player experience in a
quantitative/qualitative way using the playability model; test the effects of certain
elements of a video game on overall player experience; identify problems that may
cause a negative player experience; complete the functional assessment and objectives
of QA systems with non-functional evaluations that are closer to the experience for
each player profile; and offer reports that provide complete information of every
aspect of the player experience.
In typical Playability and PX evaluation there are four steps to test pragmatic and
hedonic attributes of the experience [24] see Fig. 2: Pre-Test, questionnaires and a
short test to obtain information about player profiles; Test, to collect information in
real time about player experience while users play a video game; Post-Test, players
are given different questionnaires and interviews to be completed, particularly, with
subjective information related to hedonic properties. The questionnaires should be
guided by the Facets of Playability; and Reports, to obtain a number of reports about
the PX including information about which playability attributes have more influence,
or which type of elements are more valued by players.

Fig. 2. Playability Evaluation Phases for video games and entertainment systems

42

In this point we present a practical example of haw to use Playability to analyze the
interactive experience with a real video game: “Castlevania: “Lords of Shadows”
[25]. This game was developed by the Spanish company MercurySteam and
published by Konami. The game is a reboot of the franchise. It is an action-adventure
game in a dark fantasy (horror/fantasy) setting in Southern Europe during the Middle
Ages (in the year 1047) for PlayStation 3 and Xbox360 consoles. One objective of the
work is to develop the UX evaluation to extract results easily and cost-effectively for
the company and is effortlessly adaptable to the traditional quality assurance that
video game developers perform with the product.

The experiment involved the participation of 35 student volunteers from different
degree courses students at the University of Lleida, Spain. The students did not know
about Castlevania. The evaluation was conducted at the UsabiliLAB, the usability
laboratory of the Universitat de Lleida. The evaluation equipment was based on two
computers. One of them was for the user and it was equipped with the Morae
Recorder, which registered user interaction, screen video, user interactions, user voice
and video through a web-cam. It is highly advisable to work with different player
profiles (game stakeholders) so that the results are representative of the context of
real-life video game use. The majority of the participants (Pre-Test information and
results) were male (75%) between 19 and 22 years old (90%). They were considered
to be casual players (playing approximately 5 hours per week, and with experience of
only one games console or a mobile phone). They had knowledge of different gaming
platforms, including a mobile and a desktop platform (90%). The preferences for
different game genres were: adventure (≈60%) and fighting (≈30%). 87% preferred to
play in company.

During the Test, the users play the beta of the videogame (the first two levels, Test
Cases, Figure 1) at a ‘normal’ difficulty level. The goal of the first level is to save a
village from wolves and wargs. The goal of the second level is to run away from
wargs and fight against them using a horse and finally escape from them. Using
Morae software and paper emotional script, evaluators tag expressions to analyse later
in the making of the reports. The objective is to identify looks and facial expressions
with the oral perception of the video game. To perform the gameplay analysis we use
Playability Metrics [6]. This metrics offer information about properties and attributes
of Playability (see previous points). These metrics are measured with observation
techniques such as those indicated in this work. These metrics are contextualised by
the mechanical and dynamical nature of this video game.

In the Post-Test, informal interviews and questionnaires are used to obtain
information about the player experience. The evaluation process is performed using a
list of questions, with the aim of investigating the degree of each attribute of
Playability and Facets in order to obtain a measurement of the player experience. We
readapt the list of questions from validated works [3, 5, 6, 12, 13, 14, 20, 21]. The
rating scale for the answer is 1 (very unsatisfied) to 5 (very satisfied). Each question
is related to a facet and property of Playability.

The analysis of the experience performed by Playability measurements (Table 1
and Figure 4) shows that this game causes a very balanced UX, as there is not
attribute or facet that is highlighted over others. The average punctuation in
questionnaires marks a value near to 4, which represents a video game with a good
value of interactive experience for players.

43

Table 1. Questionnaire and results to analyse PX guided by Facets of Playability

Questions Max Min Avg. Std. Dev.
Intrinsic Playability
1. The way you play the game is fun and interesting 5 2 3,84 0,80
2. Key concepts to play are easy to remember and learn 5 3 4,22 0,60
3. The game has offered fun from the moment you started with it 5 2 3,45 1,25
4. The elements of the game are consistent with the game story 5 3 4,15 0,70
5. The game provokes the need to keep playing to know what will happen with the

protagonist 5 2 4,00 1,00

6. Game elements successfully transmits the emotions of the game dynamics 5 2 3,65 1,05
7. The game allows you to interact with other characters and use different elements that

they offer 4 0 2,74 1,25

Avg. 4,86 1,57 3,72 0,95
Mechanical Playability
1. The game engine exploits the graphic and physical characteristics of the virtual world 5 2 3,81 0,85
2. The game offers a dynamic and context-sensitive help for the current challenges 5 3 3,91 0,80
3. The game provides mechanisms to capture the player's attention 5 2 3,69 1,05
4. The lighting and rain effects are similar to reality 5 3 4,19 0,95
5. The game makes it easy to learn new moves and improvements 4 3 3,95 0,85
6. The Facial expressions and gestures are understandable and representative to the

context of game 5 3 3,65 0,90

7. The Social interaction and dialogue with other characters is fluid and natural 5 0 2,95 1,40
Avg. 4,86 1,86 3,73 0,97

Interactive Playability
1. The control system is balanced and easy to interact. 5 3 4,10 0,70
2. Learn the key combination is easy to remember 5 2 4,05 1,00
3. To Access and use actions and secondary armament is fast and fun. 4 2 3,36 1,10
4. The game interface is not intrusive, and it is natural to the nature of virtual world 5 3 3,69 0,70
5. The game's information helps you to continue playing 5 3 4,15 0,70
6. The storytelling helps you understand how the protagonist feels 5 2 3,24 1,15
7. The Interaction with other characters is entertaining and relevant to the game process 4 2 2,98 0,85

Avg. 4,71 1,93 3,65 0,89
Artistical Playability
1. The story and narrative are interesting 5 0 3,48 1,45
2. The cut scenes and movies have a high degree of quality 5 3 4,00 0,85
3. The game's visual elements are recognizable elements of familiar places or

monuments of humanity 5 2 3,91 0,95

4. The music is appropriate to the action and game dynamics 5 3 3,98 0,75
5. The game does not discover story elements that may affect the future interest of the

player 4 2 3,38 0,85

6. The artistic elements transmit emotion to the player 5 3 3,81 0,95
7. Being an ally or enemy is easily identifiable during play 5 2 4,34 1,10

Avg. 4,86 1,71 3,84 0,99
Personal Playability
1. The obtained fun when playing is adequate 5 2 3,81 1,05
2. The entertainment was appropriate to the game duration 5 2 3,79 0,95
3. The difficulty level was suitable 4 1 3,74 0,90
4. Accuracy and the skill to preform the actions was right 5 3 3,79 0,80
5. The sound effects helped to continue the game action 5 3 4,31 0,90
6. The nerves did not affect the way you played 5 0 3,53 1,40
7. I would have liked to share the game with friends 5 0 3,60 1,50

Avg. 4,86 1,29 3,79 1,07
Social Playability
1. New game objectives, rules and challenges are easily identified when several players

play the game. 4 1 2,77 1,32
2. Social interaction helps to improve the game actions 5 1 3,53 0,95
3. The social interaction helps to understands and feels the story 5 0 2,12 1,45
4. There are game elements to identify the identity of each player with the virtual world. 4 0 1,8 1,23
5. The social game players or controls with other characters, differ from the individual

game system. 4 0 2,24 0,89
Avg. 4,40 0,40 2,49 1,17

TOTAL Avg. 4,83 1,67 3,75 0,97

44

	
	

	
Fig. 4. Playability values for “Castlevania: Lords of Shadow”

Notably, the central user comments focused on high quality graphics and cinematic
effects (Artistic and Mechanical properties) that caused the desire to continue playing
(Satisfaction-Motivation-Immersion). Moreover, the technical quality of the game,
together with concern for good artistic effects causes the Motivation and Immersion
to be high. The ease of controlling and using the game interfaces to perform the

45

actions (or game combos) in the video game and overcome the goals is an incitement
to play. This can be corroborated thanks to Interactive Facet.

Also, in Learnability; the punctuation could be better if the video game were to
incorporate more adaptation facilities. The socialisation option also has a good value
due to the ‘number of social elements’ that players used, but could be better. The
Personalisation (effectiveness and motivations properties) level is low due to these
being the first levels of the video game, and therefore players cannot sufficiently
personalise the weapons or combos with which to attack the enemies. Everybody
remarks on the capacity of the video game to excite and to ‘fight’ energetically with
the enemies (emotion-immersion-satisfaction).

The Post-Test results reaffirm the good opinion of the users as to the localisation
and game context (immersion), as well as to sound effects and music in general (high
level of satisfaction, mainly characterised by a state of pleasure, which varies between
excitation and neutral state (immersion-emotion). These factors contribute to a better
atmosphere and emotion, emphasising the closeness and familiar culture players
chose for the various elements of the game based on Lovecraftian ideas.

 Globally, the UX analysis indicates that the results pertaining to interactive
experience are very positive because most players (experts or casual players) played
equally, see Table 1 (Avg. and Std. Dev. values).

5 Conclusions and Future Work

This work reflects the importance of analysing the experience that players have with
video games in a pragmatic and hedonic way. Understanding and evaluating the user
experience in video games is important for developing more efficient and successful
products in terms of entertainment. Our work reflects the importance of having a
playability measurement model to analyse a player's experience of the process of use
of a videogame. In our proposal, the characterisation of playability is related to the
evaluation of player satisfaction and the evaluation of the effect of video games.

We have presented the concept of Playability as a crucial characteristic of Player
Experience in video games, outlining the attributes and properties that characterise it
in order to measure and guarantee an optimum Player Experience. To facilitate the
analysis of Playability, we have proposed six Facets of Playability in order to study
every property in each attribute and identify the elements necessary to achieve a
positive overall Playability in different video games. Our proposal have been applied
in the case of “Castlevania: Lords of Shadow” and are promoted by the Academy of
Interactive Arts and Sciences of Spain.

Now we are working on incorporating specific metrics, questionnaires and
heuristics from other research projects (see previous point) and public methods from
different video game development companies and QA studios to extend our proposal
and have enough alternatives for different player profiles, video game genres and
platforms in the video game industry to perform a more complete and unified analysis
of video games. Results of our research project are a complementary alternative to the
traditional tests and methodological QA evaluations performed by the video game
industry professionals of each company. This proposal will always be in progress

46

according to the requirements of the studios and video game developers and market.
Playability Model is not as complete as other specific UX techniques for a particular
attribute or measurement criteria. But the model is open to the inclusion of more
properties, criteria, metrics, indicators or techniques to improve the model to
characterise the quality of the interaction and the experience of video games; this is
part of our current work.

Finally, we are also currently updating and completing the different development
phases of the Player Centred Video Game Development Process, particularly the
requirement analysis and evaluation of experience. We are working on including the
use of agile methodology to help us iterate on different game prototypes, we are
incorporating playability factors to guarantee the experience in order to evaluate and
improve playable prototypes and readapt the user experience to the possible changes
in requirements and preferences which can occur when players test the game. We are
integrating these ideas in educational and sanitary rehabilitation video games where a
positive experience is a crucial factor for the success of the video games as support
tools.

Acknowledgments. This work is financed by the Ministry of Science & Innovation,
Spain, as part of VIDECO Project (TIN2011-26928). We wish to thank
MercurySteam for the multimedia material, and the students of the University of
Lleida (Spain) for their support in this work.

References

1. ISO/IEC 9241-210.: Ergonomics of Human–System Interaction – Part 210: Human
centred Design for Interactive Systems. Clausule 2.15 (2010).

2. Law, E. et al.: Understanding, Scoping and Defining User Experience: A Survey
Approach. Proc. Human Factors in Computing Systems (CHI’09), pp.719-728. (2009).

3. Bernhaupt, R (eds).: Evaluating User Experience in Games: Concepts and Methods.
Springer. (2010).

4. Nacke, L et al.: Playability and Player Experience Research. DiGRA, Breaking New
Ground: Innovation in Games, Play, Practice and Theory (2009).

5. Isbister, K., Schaffer, N (eds).: Game Usability: Advancing the Player Experience.
Morgan Kaufmann (2008).

6. González Sánchez, J. L.: Jugabilidad y Videojuegos. Análisis y Diseño de la Experiencia
del Jugador en Sistemas Interactivos de Ocio Electrónico. Ed. Académica Española,
Lambert Academic Publishing GmbH & Co KG. (2011).

7. Rollings, A., Morris, D.: Game Architecture and Design. New Riders Games (2003).
8. Swink, S.: Game Feel: The Secret Ingredient. Gamasutra.

http://www.gamasutra.com/view/feature/2322/game_feel_the_sec
ret_ingredient.php [Accessed 5 May 2013].

9. Saito, A.: Gamenics and its potential. In Isbister, K., Schaffer, N. (eds) Game Usability:
Advancing the Player. Morgan Kaufmann (2008).

10. Lazzaro, M. The Four Fun Key. In Isbister, K., Schaffer, N. (eds) Game Usability:
Advancing the Player. Morgan Kaufmann (2008).

11. Järvien, A. et al. 2002. Communication and Community in Digital Entertaiment Services.
Hypermedia Laboratory Net (2). http://tampub.uta.fi/tup/951-44-5432-
4.pdf [Accessed 07 May 2013].

47

12. Federoff, M.: Heuristics and Usability Guidelines for the Creation and Evaluation of Fun
in Video Games. (Master of Science Thesis). Indiana University (2002).

13. Desurvire, H., Wiberg, C.: Game Usability Heuristics (PLAY) for Evaluating and
Designing Better Games: The Next Iteration. In Ozok, A.; Zaphiris, P. (eds). Proceedings
of the 3d International Conference on Online Communities and Social Computing: Held as
Part of HCI International 2009 (OCSC '09). Springer-Verlag, Berlin, Heidelberg, pp. 557-
566 (2009).

14. Pinelle, D., Wong, N., Stach, T.: Heuristic evaluation for games: usability principles for
video game design. In Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems (CHI '08). ACM, New York, NY, USA, pp. 1453-
1462 (2008).

15. van den Hoogen, W.M., IJsselsteijn, W.A., de Kort, Y.A.W.: Exploring Behavioral
Expressions of Player Experience in Digital Games. In Proceedings of the Workshop on
Facial and Bodily Expression for Control and Adaptation of Games ECAG 2008, pp. 11-
19 (2008).

16. Canossa, A., Drachen, A.: Play-Personas: Behaviours and Belief Systems. In User-Centred
Game Design. Human-Computer Interaction - Interact 2009, Pt II, Proceedings, Volume
5727, pp. 510-523 (2009).

17. Björk, S., Lundgren, S., Holopainen, J.: Game Design Patterns. In Proceedings of Level
Up 1st International Digital Games Research Conference (2003).

18. Chen, M., Cuddihy, E., Thayer, A., and Zhou.: Creating cross-cultural appeal in digital
games: Issues in localization and user testing. In Presentation at the 52nd annual
conference for the Society for Technical Communication (STC).
http://markdangerchen.net/pubs/Game_Slides_final3.ppt [Accessed
11 May 2013] (2005)

19. Padilla Zea, N., Gonzalez Sanchez, J.L., Gutierrez Vela, F.L., Cabrera, M., Paderewski,
P.: Design of educational multiplayer videogames: A vision from collaborative learning,
In Advances in Engineering Software, 40 (12), 1251-1260 (2009).

20. Poels, K., Kort, IJsselsteijn, W.A., de Kort, Y.A.W.: Development of the Kids Game
Experience Questionnaire. Poster presented at the Meaningful Play Conference, East
Lansing, USA (2008).

21. Poels, K., IJsselsteijn, W.A., de Kort, Y.A.W., Van Iersel, B.: Digital Games, the
Aftermath. Qualitative insights into Post Game Experiences. In R. Bernhaupt, R. (eds.).
Evaluating User Experiences in Games. Berlin: Springer, pp. 149-165 (2010).

22. Westin, T., Bierre, K., Gramenos, D., Hinn, M.: Advances in Game Accessibility from
2005 to 2010. In Stephanidis, C. (eds) Universal Access in Human-Computer Interaction.
Users Diversity. Lecture Notes in Computer Science 6766, pp. 400-409 (2011).

23. Yuan, B., Folmer, E., Harris, F. : Game accessibility: a survey. In Universal Access in the
Information Society. 10, 81-100 (2010).

24. González Sánchez, J. L., Gil Iranzo, R. M., Gutiérrez Vela, F. L.: Enriching evaluation in
video games. In: Campos, P., Graham, N., Jorge, J.A., Nunes, N., Palanque, P.,
Winckler, M. (eds.), Human-Computer Interaction - INTERACT 2011 - 13th IFIP TC 13
International Conference Proceedings, Part IV. LNCS, vol, 6949, pp. 519-522, Springer,
London (2011).

25. Castlevania: Lords of Shadow:
http://www.konami.com/officialsites/castlevania/

48

Creativity and Entertainment: Experiences and Future
Challenges

Alejandro Catala, Javier Jaen, Patricia Pons, Fernando Garcia-Sanjuan

Grupo ISSI
Departamento de Sistemas Informático y Computación

Universitat Politècnica de València
Camino de Vera S/N

46022 Valencia (Spain)

{acatala,fjaen,ppons,fegarcia}@dsic.upv.es

Abstract. This paper revisits the idea of involving creativity along entertain-
ment. The review of the related work shows that the creation of artifacts is usu-
ally directed to programming simulations and the creation of entities to be in-
volved during the play. It is observed that proposals providing more creative
capabilities are usually based on WIMP interfaces, negatively impacting on the
role of collaboration and active participation. This paper presents the main find-
ings of the CreateWorlds project, which relies on an interactive tabletop inter-
face in order to support the creation of digital ecosystems, and states several
challenges that will have to be addressed to build future creative game-based
learning environments.

Keywords: creativity, entertainment, challenges, ambient intelligence, user en-
gagement, learning

1 Introduction

Supranational entities such as the EU commission are recognizing creativity as a key
driver for economic development in a competitive global market. The EU is fostering
the development of a knowledge and creative based society by means of the strategic
framework for European cooperation in education and training [1]. It aims at enhanc-
ing creativity and innovation at all levels of education and training, a response to fa-
cilitate the change in our society and the economy in the long term.

Although the term creativity seems always to cause controversy due to the wide
range of definitions [2], all of them essentially refer to the idea of novelty, originality,
innovation, unusual, different, etc. Creativity is defined in most of the main thinking
streams as a multidimensional concept, which is related to several personal traits,
skills, product features, processes, and environmental conditions [3].

In one way or another, creativity is important because it is related to divergent
thinking and the process of generating and exploring multiples ideas to obtain reason-
able solutions to complex or open problems and face new challenges.

49

Digital information and communication technologies (ICT) have been seen as
powerful tools to facilitate learning in general, as well as to develop creativity and
related skills. The main features behind this idea are the exploration and representa-
tion of ideas in multiple ways (multimedia); interactivity; reproducibility of problems
in a controlled manner; retrial without or with a reduced risk in case of fail; and
communication and information sharing among users for discussion.

Myriads of digital systems have been created with learning purposes and to support
learning tasks [4], [5], [6]. They have been used as a complement in informal learning
settings and relied on many different technologies: from multimedia offline applica-
tions on CD/DVD to online web-based on desktop systems; from virtual and aug-
mented reality in static settings to networked augmented and mobile systems, etc.
Regardless of the base technology, learning activities have been focused on games
and playing activities and have relied on appealing and engaging user interfaces. This
shows that entertainment along with constructivist approaches as a resource are used
as a mean to facilitate learning [7]. The point is that learning would take place if these
systems succeeded in keeping users highly motivated and engaged in the activities for
a sustained period of time.

This paper discusses, in section 2, how a set of learning systems focused on crea-
tivity have been used for learning purposes, and section 3 presents our own research
based on digital tabletops and discusses the related experiences. Section 4 poses some
general challenges that must be taken into account by those systems, including enter-
tainment oriented, that use new ICT with the purpose of supporting some kind of
creative learning.

2 Related Work

The present section briefly reviews, in a non-extensive way, a collection of selected
works that have used digital technologies in creative tasks with the purpose on learn-
ing. For two decades, these proposals based on entertainment technology for creative
learning have focused on the creation of some kind of artifacts. According to the sup-
ported creation capabilities, the reviewed works fall within two primary categories
identified here.

2.1 Programming and Performing in a Pre-established World

This first category deals with those proposals that have been focused on supporting
performances of pre-established characters or entities in a world ecosystem in a broad
sense. Hence, the common feature for works in this group is that users cannot create
the characters or entities themselves but these are already pre-existing and then users
are allowed to perform with them or specify their behavior by encoding a program to
tell a story.

Since the programming language Logo and Graphics Turtle [8] was devised as a
way to show and teach computational concepts, many proposals have been inspired in
a subset of the features of Logo and have focused on social and collaboration skills.

50

For instance, AlgoBlock [9] describes an educational tool where users use physical
block-like pieces that can be arranged all together to program the movement of a
submarine within a labyrinth. The result of the program execution is shown on a mon-
itor by means of an animated submarine moving on a map. The system allows stu-
dents to improve their skills in problem-solving by means of some sort of collabora-
tive programming tasks.

A selected second example is Cleogo [10]. It is a programming environment for
groups. The aim is to encourage children to solve problems collaboratively. Each user
has a screen equipped with a keyboard and mouse, but the input controllers provide
access to all the functionality of a shared widget displayed in the different screens.

A third outstanding example using Logo is Turtan [11]. It is a tangible program-
ming language that uses a tangible surface interface in which tangible pieces represent
virtual instructions of programs. As in the original Logo language, one of the design
objectives of TurTan is learning programming concepts. The work mentions the ne-
cessity to explore learning and creativity as the system is oriented to young children
and because its potential to support the artistic expression and collaborative scenarios.

Another relevant work is the exploration on tangibles carried out in [5]. They dis-
cussed a system that allows children the creation, edition and simulation of a 2D vir-
tual environment in a collaborative way. The TangibleSpaces system consists of a
large carpet with an array, a set of plastic cards with RFID tags representing entities
and operations, and a screen which shows the state of the system under construction.

Instead, Quetzal and Tern are tangible languages to specify the behavior of robotic
ecosystems [12]. They use physical objects (plastic or wooden pieces) with no elec-
tronic device but with visual tags. These languages were designed to teach basic pro-
gramming to children in a classroom setting in primary and secondary schools. The
robots can interact in the same world, and several student groups can collaborate in a
shared activity to solve problems to pick up objects or navigate through a labyrinth.

IncreTable represents a great effort on joining tangible and interactive digital inter-
faces to foster creativity [13]. It is a game based on The Incredible Machine that uses
an advanced high technology setting focusing on mixed reality tabletops. The game
consists of several puzzle exercises that require the construction of Rube-Goldberg
machines, involving virtual as well as actual domino pieces and other physical objects
such as portals or robots. Levels are supposed to encourage user creativity to solve the
puzzle in a complex way.

Finally, StoryTelling Alice [14] is a programming environment aimed at girl teen-
agers to encourage them to learn programming skills. The girls can tell their stories in
the virtual environment by means of programs. They construct free of syntax errors
by simply drag&drop interaction techniques and through the pre-visualization mode
they can see the resulting animation to check whether the instructions do what they
wanted for their stories.

The main commonality of all these works is their focus on the creation of proce-
dural behavior for virtual entities, but the creation of the world ecosystem is less
common. In addition, most of them consider co-located activities mainly mediated by
tangible interaction.

51

2.2 Creating Characters for an Ecosystem World

This second category includes those proposals that have considered the creation of
characters/entities as a central task. Once characters are created, most of these works
rely on a computational model to specify the behavior of these entities to build the
simulation or the story.

LogoBlocks is a graphical programming language to support programming for the
LEGO programmable brick [15]. The brick is a small computer that can be embedded
and used in LEGO creations by reading from sensors and controlling engine activa-
tions. LogoBlocks follows a drag&drop methaphor in a WIMP user interface. Alt-
hough LogoBlocks itself is simply the graphical programming language, it is targeted
at the programmable brick and therefore the constructions of the robots are creations
that can also be used as part of an ecosystem.

Scratch [4] is a graphical programming environment that allows children to pro-
gram interactive stories, games, animations and simulations. All these are based on
2D stages composed of a background and a set of sprite-based objects and the lan-
guage used is based on LogoBlocks. There exists a web-based online community
which aims to foster discussion and creativity between users, relaying on collabora-
tion, mutual discussion and distributed contribution.

Another relevant work with the idea of creating 2D entity-based virtual ecosystems
in full is AgentSheets [16]. It allows users to create simulations and 2D interactive
games based on a rectangular array. The users have to design the visual aspect of
agents by drawing icons and specify their behavior using event-based visual rules.

An innovative tangible approach is Topobo [6]. It is a 3D constructive assembly
system with kinetic memory that allows the creation of biomorphic forms like animals
and skeletons. It is designed to be a user interface that encourages creativity, discov-
ery and learning through active experimentation with the system.

ShadowStory [17] presents a storytelling system inspired in Chinese traditional
shadow puppetry. Children use a laptop with touch input to create digital animated
characters and other accessories or props, and then they are allowed to perform stories
on a back-illuminated screen, controlling the characters with simple movements by
means of orientation handheld sensors.

The works described in this category focus on the creation of artifacts, such as the
entities, the entity behavior, and the world ecosystem itself. However, in most of the
cases they accomplish this by using a Personal Computer (PC), what makes them less
suitable to support collaborative tasks. As such social interaction is also an important
part in developing creativity, our running project CreateWorlds attempts to bring a
proposal in which co-operation and collaboration is central.

3 CreateWorlds: Experiences on Creating Ecosystems

3.1 Vision

Constructivist methods are usually present in videogames and interactive media for
learning. However, the works in the previous section are going further because they

52

support the creation of artifacts in several ways so that learning is triggered by com-
pleting creative tasks. It means that they do not only require users to adopt an active
role and carry out some actions to achieve goals while consuming media. In addition,
they require creating something new, resulting in extra cognitive effort and supposed-
ly in more rewarding experiences in terms of learning.

In our opinion, future gaming platforms supporting learning activities should pro-
vide pre-set scenarios easily editable by teachers to adapt them to the curriculum con-
tent, and a space for experimentation, discussion and reflection for both teachers and
learners. Therefore, future research on serious games for learning should not be fo-
cused on producing games whose content fits to a wide range of educational topics
and learning styles but instead on giving teachers and learners the tools to produce
their own games. Under this vision we have run the project Createworlds that contrib-
utes to the field of creativity and entertainment in several ways.

On the one hand, it aims at flexibly supporting discussion, action and reflection
processes in a similar way as considered by educators and researchers when combin-
ing traditional teaching materials with videogames [18]. This is especially important
to strengthen attitudes and develop certain skills related to creativity, such as generat-
ing ideas, set and testing hypothesis, collective discussion, exchange of ideas, curiosi-
ty, independence, novelty, flexibility, openness to new experiences, etc.

On the other hand, it brings the pedagogy posed by Clark Abt at 70s, when he set
the creation of traditional play as an effective mean to creative learning [19]. The idea
is to consider the creation of games and the subsequent play as the creative task to be
carried out, not limited to a very specific part as happened in the reviewed works. It
entails, as he discussed, that students take the role of game designers, who are actually
inventing a simulation model of the process to be played. In the course of doing so,
the student must identify the significant variables involved, the relationships among
them, and the dynamics of the interaction. To do this successfully, it requires under-
standing the process to be simulated. Therefore, involving the students in this process
expands their knowledge, learning not just factual content but also the processes and
interactions involved.

3.2 Realization

The project has been realized by means of several prototypes relying on tabletop
technology. Interactive tabletops are gaining increased attention and promising to
success in education [20]. The decision to use digital interactive surfaces is motivated
by the priority of issues to fulfill the vision, and the idea of following more natural
interaction platforms, facilitating the discussion and collaboration among participants,
and therefore not being the technology a significant barrier but a medium to enhance
the overall experience.

In this way, the interaction is face-to-face supported by both verbal and non-verbal
communication (i.e. speech and gestural) in a small group of participants, without
technological barriers as in networked approaches. Therefore, the mediation entirely
relies on social protocols for negotiation and collaboration. In turn, the limitation is
that activities must be always co-located, there is no a record of communications, and

53

the number of participants per session is lower than in networked scenarios. The bar-
rier that keyboards and peripheral devices usually introduce has been removed thanks
to the interaction supported by using fingers and tangible tokens on the digital sur-
face. This interaction paradigm is expected to be more attractive to start interactions
as it is more natural, easier, and its penetration in the mass market of smartphones and
tablets.

CreateWorlds supports the creation of game ecosystems where 2D virtual entities
can be located and simulated according to intelligible physics (i.e. kinematics). The
ecosystem world primarily supports the creation of entities and the specification of
their behavior as reactive rules. The entities, instead of being simply represented by
single bitmaps or sprites as in most 2D game tools, we decided to support the defini-
tion of entities composed of architectural units in the same way that a skeleton is
composed of bones. In this way, we can also support the creation of more advanced
behaviors and the more interesting learning scenarios based on storytelling containing
puppets [21].

In most cases, games require much more than the kinematic simulation and need to
control the change of value properties under certain situations. A model of reactive
rules have also implemented in CreateWorlds. This model considers the condition and
the action as expressions so that they can be visually represented by dataflows [22]. It
has facilitated a rule editor that supports the composition of dataflows by connecting
lines with fingers between operators selected by touch drag&drop techniques [23].

Hence, the editors for the creation of both entities and rules have been designed as
compositional tasks that consist of assembling components. At any moment, the eco-
system player can be called. It interprets the edited artifacts and starts an interactive
enactment combining entity simulation with rules behavior [21]. Users can check
whether the game ecosystem is running as expected, interact directly with entities
through their fingers, and eventually modify and fix issues they find. It facilitates
quick trials and execution to improve the ecosystem incremental and iteratively. Fig-
ure 1 shows different stages at using the prototypes.

The platform can save the ecosystem as users progress in their tasks in order to re-
trieve the creative sessions later. It also allows loading pre-set scenarios containing
partial game ecosystems. It is particularly useful for teachers and tutors to design
learning sessions in which participants are assigned to complete a specific part of the
ecosystem according to specific learning goals.

Fig. 1. (Left) Users creating an entity-based simulation; (Center) Editing a dataflow rule;

(Right) Playing an asteroids game running on the middleware.

54

3.3 Main Findings

A simplified version of the entity editors has been used in several empirical studies to
test the thinking-discussion-reflection loop in creative tasks. Teenagers were proposed
two different tasks, namely freely creation of entity-like figures [24], [25], and crea-
tion of Rube-Goldberg machines [26].

In these sessions we observed how direct communication and manipulation on tab-
letops is carried out. The digital surface encourages participation and keeps partici-
pants motivated, confirming that the target technology is suitable for our purpose. The
interface invites users to touch unconcerned, try and experience variations of their
creations until they get the ecosystem working properly. Such iterative retrial refine-
ment is positive as it allows to test ideas without fear for failure. Fails must be taken
as new inputs for later success and as necessary events in the path to learning.

The surface can be seen as a canvas in which assembling components remain, and
where including and manipulating more digital items have a low cost for users. There-
fore, it facilitates the exploration of new ways to connect the entity components and
users are able to elaborate and explore more complex ideas in the digital ecosystem
like this than those they would be allowed with traditional learning materials.

It is observed that the surface helps in sharing the digital objects. It is also a posi-
tive point as participants should actively participate in the construction of the ecosys-
tem. Among the several manipulation patterns observed, a fair co-operation pattern
prevailed. It is worth to mention that all this has been built upon a consistent and ho-
mogeneous exploration framework provided by Tangiwheel [27], which is essentially
a flexible widget for collections designed to support simultaneous parallel explora-
tions in multi-user surface applications. During the experimental sessions, we embed-
ded the thinking-discussion-reflection loop so that teenagers had to work in groups in
activities that combine paper and pencil materials with the use of the digital system.
This combination is also positive since it ensures that teenagers actually prepare their
ideas and discusses them with the partners before implementing them on the digital
surface. This is in favor of creative and social skills that we are interested in develop-
ing on users. Finally, such a loop showed that the surface can effectively be used to
split the learning sessions in different ways, so that tutors can design the base materi-
als to be provided and the participants can keep their progress between sessions.

Additionally, we have conducted a preliminary evaluation on the comprehension of
the dataflow expressions to be used in the rule editor [22]. The study involved teenag-
ers at secondary schools, and it showed that the visual language for dataflow is pre-
ferred and that young non-expert programmers are able to understand and even modi-
fy the expressions without tool support.

4 Future Challenges: Towards Creative Smart Learning
Environments

Despite the previous technological efforts to support creative learning, we believe
there are still serious challenges that need to be addressed in the field of entertainment

55

or game experiences that enable creative learning scenarios which we will be briefly
discussed in the following.

4.1 Real versus Virtual Experiences

All the previous approaches, including CreateWorlds, support the creation of ecosys-
tems that exist in a simulated way. However, new paradigms such as ubiquitous com-
puting bring new possibilities for new creative learning game experiences based on
reactive entities that not only exist in a virtual world but which are also part of the
surrounding spaces. In this sense, it would be reasonable to think that smart environ-
ments may be effective tools to support creative learning gaming experiences.

4.2 Tools versus Applications

Thinking and learning processes are plastic and flexible, as they can change dynami-
cally under different circumstances. The ways which teachers teach and students learn
are diverse, as well as the learning activities and tasks are. Thus, there are very im-
portant sources of variability to deal with, which would lead to complex software
requirements and advanced architecture design. However, digital learning systems are
mostly focused on a series of activities to be carried out and completed in a very spe-
cific order, resulting inflexible.

In the same way that learning materials are prepared and developed for use in tradi-
tional learning environments so that they suit the curriculum contents and the planned
sessions flexibly, future learning environment supported by ICT should also manage
and facilitate this complexity. The point is that as any other software, if workflow
requirements are not met (e.g. the way users would like to use it within their ordinary
processes), it will be useless and the interest in adopting it would therefore drop.

Therefore, a very important challenge is that of tools supporting the creation of ma-
terials and the management of learning sessions rather than inflexible ICT applica-
tions supporting a very specific task. A sample that shows how important is fitting
such variability in the processes is the effort in studying the weaving of mass video-
games and computer software not designed for learning with reflection and discussion
processes and other traditional tasks in learning environments [18]. It shows a per-
spective that seems more cost-effective, adaptable and especially it shows that ICT
must remain as a secondary but important element behind learning purposes.

4.3 Natural and Tangible Interfaces

For sure one of the most important efforts to be made is that of interfaces, since they
are the visible part and the entry point to the systems. It is important that user inter-
faces invite users to interact with them and they must be easy to use and manipulate.
In general, interfaces in the entertainment industry are attractive and highly interac-
tive, providing quick response to actions and displaying information with immediacy.
These interfaces are more focused on responding to actions and the consumption of
information in form of multimedia experiences.

56

Nevertheless, when artifact creation is needed, interface design requires more at-
tention and it is more complex. The point is that ordinary and mass controllers are
very effective when used to navigate spaces, consume linear information, select short
options or input immediate short actions, but they weaken when they need fitting to
longer input processes as in creative/creation tasks. For instance, in certain simulators
that allow the construction of cities it is required to navigate the world with the direc-
tional pad while toggling editing modes to select, rotate and adjust the building to be
placed. In contrast, tangible interfaces may seamlessly handle such processes easily as
they account for mappings to several inputs and therefore support manipulations ef-
fectively.

Thus, input controllers can clearly be a barrier for creativity when it is not easy and
comfortable handling the system to do exactly what users want, leading them to dis-
engagement and leave the activity, impacting negatively on user (learning) perfor-
mance. Such tendency towards tangibility has however some issues that may make it
less interesting in terms of mass market, investment and acquisition of underused
devices. Although tangibles normally entail more specific controllers, as soon as new-
er natural interaction technologies (e.g. motion and depth-sense trackers like Kinect)
are successfully combined with new general and affordable tangibles, contributions to
creation interfaces will become more relevant.

4.4 Measurement and Assessment

Measurement and assessment are complex and they are challenges more related to
pedagogical issues. Defining creativity accurately is sometimes difficult, as men-
tioned above, and consequently suitable measures are also hard to be defined and
operationalized because they depend on the task context. Although there are assess-
ment models [28], the needed measures are not easy to obtain, and it therefore hinders
the collection of clear evidences that eventually prove the degree in which learning
environments bring benefits and advantages in developing creativity, what would give
value and encouragement to adopt them. This lack hampers the evolution and the
introduction of structural changes in the educational system so that instructionist ac-
tivities become replaced by other creativity-related activities.

This reality requires of multidisciplinary joint work aiming at the integration of
measurement instruments from the pedagogy and psychology into computer-mediated
activities. The relationship between interactions (between both the machine and peers)
and creativity indicators must be studied in order to devise computational proposals
that automatically detect creativity cues to be used not only for assessment but also to
facilitate the necessary scaffolding or the construction of user profiles that could also
enhance other context based learning experiences.

4.5 Storytelling and Coordination Schemes

A highly creative activity is that of inventing and telling stories. Such activity normal-
ly also considers the creation of the characters and props which can be used during the
performance, developing more artistic and handcraft aspects.

57

Computational environments oriented to this kind of activity are usually based on
either rules or timeline models involving virtual entities in order to make the story
progress. These environments must evolve towards open or live performances, in
which available smart elements enrich the performances and unleash creative situa-
tions. Hence, it is interesting to come up with new forms of storytelling that includes
smart technologies so that a mixture of live and virtual performances can be used to
express a story.

4.6 Group Activity Sensing

Proposals consider group activities to include discussion and reflection between par-
ticipants. Interactions between individuals make it more difficult to analyze and dis-
cover how tasks are carried out. However, it would be useful being able to distinguish
the relevant and meaningful actions among participants [29], since the environment
would be able to determine the attitude, behavior, even the mood of participants as
well as the state of the group during the progress of the activities.

4.7 Multi-device Integration

Interfaces can be seen as the creation tools that allow the manipulation of digital ob-
jects. Tools in a tool kit have primary functions that are addressed effectively. For
instance, the screwdriver’s primary function is either screw down or unscrew, and if it
is used for any other function it will not work efficiently. Analogously, the interaction
properties of each interface technology will determine their suitability to support one
task or another. Hence, we must take advantage of the range of devices currently
available (with different interfaces) which may offer different capabilities in terms of
visualization and manipulation of digital objects. This can be understood as a sort of
specialization in the use of available devices in order to take full advantage during
interactions.

It brings the opportunity to consider integration of multiple devices, and therefore
multi-device interaction frameworks should be devised, which allows sharing and
exchange information among them seamlessly and easily [30], and which are used in
situations supporting collaboration and co-operation effectively.

5 Conclusion

Related work showed that systems based on entertainment technology with attractive
interfaces are being used for learning purposes. In those proposals the creation of
artifacts is usually directed to programming simulations and the creation of entities. It
is observed that proposals providing more creative capabilities are usually based on
WIMP interfaces, therefore negatively impacting on the role of collaboration and
active participation.

Covering these desirable characteristics, this paper has summarized the main find-
ings of a new approach developed within the scope of the CreateWorlds project,

58

which relies on an interactive tabletop interface in order to foster discussion, action
and reflection when supporting the creation of digital game ecosystems. Finally, sev-
eral future challenges have been enunciated that should be explored in order to tech-
nologically move towards the construction of creative ambient intelligent game-
oriented learning environments.

Acknowledgements

This work received financial support from the Spanish Ministry of Education under
the National Strategic Program of Research and Project TIN2010-20488. Our thanks
to Polimedia/UPV for the support in computer hardware.
This work is also supported by a postdoctoral fellowship within the VALi+d program
from Conselleria d’Educació, Cultura i Esport (Generalitat Valenciana) to A. Catalá
(APOSTD/2013/013).

References

1. European Commission: Progress Report: Chapter IV - Enhancing creativity and Innova-
tion, including entrepreneurship at all levels of education and training. In Progress To-
wards the Lisbon objectives in education and training, indicators and benchmarks (2009)

2. Aleinikov, A., Kackmeister, S., Koenig R. (Eds.): Creating creativity: 101 definitions.
Midland, MI: Alden B. Dow Creativity Center, Northwoods University (2000)

3. Sawyer, R. K.: Explaining creativity: The science of human innovation. New York: Ox-
ford University Press (2006)

4. Maloney, J. et al.: Scratch: A Sneak Preview. In: International Conference on Creating,
Connecting and Collaborating through Computing, Kyoto, Japan, pp. 104-109 (2004)

5. Fernaeus, Y., Tholander, J.: Finding design qualities in a tangible programming space. In:
SIGCHI conference on Human Factors in computing systems, ACM, pp. 447-456 (2006)

6. Parkes, A.J. et al.: Topobo in the wild: longitudinal evaluations of educators appropriating
a tangible interface. In: SIGCHI conference on Human factors in computing systems, Flor-
ence, Italy, pp. 1129-1138 (2008)

7. Michael, D., Chen, S.: Serious Games: Games that Educate, Train, and Inform. Course
Technology PTR, Mason, USA (2005)

8. Papert, S: Different Visions of Logo, Computers in the Schools, 2(2-3) (1985)
9. Suzuki, H., Kato, H.: Interaction-level support for collaborative learning: AlgoBlock-an

open programming language. In: The first international conference on Computer support
for collaborative learning. John L. Schnase and Edward L. Cunnius (Eds.). L. Erlbaum As-
sociates Inc., Hillsdale, NJ, USA, pp. 349-355 (1995)

10. Cockburn, A., Bryant, A.: Cleogo: Collaborative and Multi-Metaphor Programming for
Kids. In: the Third Asian Pacific Computer and Human Interaction, pp.189-194 (1998)

11. Gallardo, D., Fernàndez-Julià, C., Jordà, S.: TurTan: A Tangible programming language
for creative exploration. In: the 2008 IEEE international workshop on horizontal interac-
tive human-computer-systems, Amsterdam, The Netherlands (2008)

12. Horn, M.S., Jacob, R.J.K.: Designing Tangible Programming Languages for Classroom
Use. In: the 1st international conference on tangible and embedded interaction, pp. 159-
162 (2007)

59

13. Leitner, J. et. al.: Physical interfaces for tabletop games. ACM Comput. Entertain. 7, 4, Ar-
ticle 61, December (2009)

14. Kelleher, C., Pausch, R.: Using storytelling to motivate programming. Magazine Commu-
nications of the ACM - Creating a science of games CACM 50:7, 58-64 (2007)

15. Begel, A.: LogoBlocks: A Graphical Programming Language for Interacting with the
World. MIT (1996)

16. Repenning A., Ioannidou A., Zola J.: AgentSheets: End-User Programmable Simulations.
Journal of Artificial Societies and Social Simulation, 3:3 (2000)

17. Lu, F. et. al.: ShadowStory: Creative and Collaborative Digital Storytelling Inspired by
Cultural Heritage. In: SIGCHI conference on Human factors in computing systems, pp.
1919-1928 (2011)

18. Ellis H., Heppell S., Kirriemuir J., Krotoski A., McFarlane A.: Unlimited Learning: The
role of computer and video games in the learning landscape. ELSPA: Entertainment and
Leisure Software Publishers Association (2006)

19. Abt, C.: Serious Games. Viking Press, New York, USA (1970)
20. Dillenbourg, P., Evans, M.: Interactive tabletops in education. International Journal of

Computer-Supported Collaborative Learning, 6:4, 491-514 (2011)
21. Catala, A., Garcia-Sanjuan, F., Pons, P., Jaen, J., Mocholi, J.A. AGORAS: Towards col-

laborative game-based learning experiences on surfaces. In: Cognition and Exploratory
Learning in Digital Age, IADIS, pp. 147-154 (2012)

22. Catala, A., Pons, P., Jaen, J., Mocholi, J.A., Navarro, A.: A meta-model for dataflow-based
rules in smart environments: Evaluating user comprehension and performance, Science of
Computer Programming, In press, Elsevier, available online 20 July 2012

23. Pons, P., Catala, A., Jaen, J.: TanRule: A Rule Editor for Behavior Specification on Tab-
letops. In: Extended Abstracts of the ACM Tangible, Embedded and Embodied Interaction
TEI (2013).

24. Catala, A. et al.: Exploring Direct Communication and Manipulation on Interactive Sur-
faces to Foster Novelty in a Creative Learning Environment. In: International Journal of
Computer Science Research and Application, 2:1, 15-24 (2012)

25. Catala, A., Jaen, J., Martinez, A. A., Mocholi, J.A.: AGORAS: Exploring Creative Learn-
ing on Tangible User Interfaces. In: the IEEE 35th Annual Computer Software and Appli-
cations Conference, pp.326-335 (2011)

26. Catala, A., Jaen, J., van Dijk, B., Jordà, J.: Exploring tabletops as an effective tool to foster
creativity traits. In: the Sixth ACM International Conference on Tangible, Embedded and
Embodied Interaction-TEI, pp. 143-150, Kingston, Canada, (2012)

27. Catala, A., Garcia-Sanjuan, F., Jaen, J., Mocholi, J.A.: TangiWheel: A Widget for Manipu-
lating Collections on Tabletop Displays Supporting Hybrid Input Modality. J. Comput.
Sci. Technol., (27)4:811-829 (2012)

28. Ellis, S., Barrs, M.: The assessment of creative learning in Creative Learning. Creative
Partnerships, Arts Council England, 14 Great Peter Street, London, SW1P 3NQ (2008)

29. Vinciarelli, A., Pantic, M., Bourlard, H., Pentland, A.: Social signal processing: state-of-
the-art and future perspectives of an emerging domain. In: the 16th ACM international
conference on Multimedia, ACM, pp. 1061-1070, New York, NY, USA, (2008)

30. Marquardt, N., Hinckley, K., Greenberg, S.: Cross-device interaction via micro-mobility
and f-formations. In: the 25th annual ACM symposium on User interface software and
technology, pp. 13-22, New York, NY, USA: ACM (2012)

60

Evolving Aesthetic Maps for a Real Time
Strategy Game

Raúl Lara-Cabrera, Carlos Cotta and Antonio J. Fernández-Leiva

Department “Lenguajes y Ciencias de la Computación”, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 Málaga – Spain

{raul,ccottap,afdez}@lcc.uma.es

Abstract. This paper presents a procedural content generator method
that have been able to generate aesthetic maps for a real-time strategy
game. The maps has been characterized based on several of their proper-
ties in order to define a similarity function between scenarios. This func-
tion has guided a multi-objective evolution strategy during the process
of generating and evolving scenarios that are similar to other aesthetic
maps while being different to a set of non-aesthetic scenarios. The so-
lutions have been checked using a support-vector machine classifier and
a self-organizing map obtaining successful results (generated maps have
been classified as aesthetic maps).

Keywords: Procedural content generation, game aesthetics, computational in-
telligence, real-time strategy games

1 Introduction

The video-game industry has become one of the most important component
in the entertainment business, with a total consumer spent of 24.75 billion US
dollars in 2011 [5]. The quality and appealing of video-games used to rely on
their graphical quality until the last decade, but now, their attractiveness has
fallen on additional features such as the music, the player immersion into the
game and interesting story-lines. It is hard to evaluate how much amusing a
game is because this evaluation depends on each player, nevertheless there is a
relationship between player satisfaction and fun.

Procedural Content Generation (PCG) [12] includes algorithms and tech-
niques dedicated to produce game content automatically, providing several ad-
vantages to game developers, such as reduced memory consumption, the possi-
bility of create endless video-games (i.e. the game changes every time a new game
is started) and a reduction in the expense of creating the game content. These
benefits are well known by the industry as demonstrated by the use of PCG
techniques during the development of commercial games such as Borderlands,
Borderlands 2, Minecraft and Spore.

Search-based procedural content generation [22] (SBPCG) techniques apply
a generate and test scheme, that is, the content is firstly generated and then

61

evaluated according to some criteria. This evaluation sets the quality level of
the generated content automatically. Then, new content is created based on
previous evaluations. This process, which should be automated, is repeated until
the content reach a certain quality level, hence making evolutionary algorithms
a perfect tool for this process. In this work we have used a SBPCG technique
to generate aesthetic maps for a real-time strategy (RTS) game. This method
is based on a multi-objective evolution strategy that generate maps which are
similar to other aesthetic maps and different from other non-aesthetic maps at
the same time.

2 Background

Real-time strategy games offer a large variety of fundamental AI research prob-
lems [1] such as adversarial real-time planning, decision making under uncer-
tainty, opponent modelling, spatial and temporal reasoning and resource man-
agement. This genre of game has been widely used as a test-bed for AI techniques
[14]. Planet Wars is a real-time strategy game based on Galcon and used in the
Google AI Challenge 2010. The objective is to conquer all the planets on the
map or eliminate all the opponents. Games take place on a map on which sev-
eral planets are scattered. These planets are able to host ships and they can be
controlled by any player or remain neutral if no player conquer them. Moreover,
planets have different sizes, a property that defines their growth rate (i.e., the
number of new ships created every time step, as long as the planet belongs to
some player). Players send fleets of ships from controlled planets to other ones. If
the player owns the target planet the number of fleet’s ships is added to the num-
ber of ships on that planet, otherwise a battle takes place in the target planet:
ships of both sides destroy each other so the player with the highest number
of ships owns the planet (with a number of ships determined by the difference
between the initial number of ships). The distance between the planets affects
the required time for a fleet to arrive to her destination, which is fixed during
the flight (i.e., it is not possible to redirect a fleet while it is flying).

PCG for Planet Wars involves in this case generating the maps on which
the game takes place. The particular structure of these maps can lead to games
exhibiting specific features. In previous work [15,16] we focused on achieving
balanced (i.e., games in which none of the players strongly dominates her op-
ponent) and dynamic (i.e., action-packed) games. PCG techniques are usually
employed to generate maps, as exhibited by the large number of papers on this
topic [12]. For example, Mahlmann et al. [18] presented a search-based map
generator for an simplified version of the RTS game Dune, which is based on
the transformation of low resolution matrices into higher resolution maps by
means of cellular automata. Frade et al. introduced the use of genetic program-
ming to evolve maps for videogames (namely terrain programming), using either
subjective human-based feedback [9,10] or automated quality measures such as
accessibility [8] or edge-length [11]. Togelius et al. [21] designed a PCG system

62

capable of generating tracks for a simple racing game from a parameter vector
using a deterministic genotype-to-phenotype mapping.

Maps are not the only content that is generated with these methods. For
example, Font et al. [6] presented initial research regarding a system capable
of generating novel card games. Collins [2] made an introduction to procedural
music in video games, examining different approaches to procedural composition
and the control logics that have been used in the past. The authors of [19]
have created a prototype of a tool that automatically produce design pattern
specications for missions and quest for the game Neverwinter Nights.

3 Materials and methods

As stated before, this work focuses on the design of aesthetic maps for the RTS
game Planet Wars. This section describes the mechanisms that helped us to
achieve our goal: firstly, there is a description about how the maps have been
represented and characterized in order to get better aesthetics; next, there is a
detailed explanation of the evolutionary algorithm used to generate the maps.

3.1 Representation and characterization

Game’s maps are sets with a certain number of planets np located on a 2D plane.
These planets are defined by their position on the plane (coordinates (xi, yi)),
their size si and a number of ships wi. The size si defines the rate at which a
planet will produce new ships every turn (as long as the planet is controlled by
any player) while the remaining parameter, wi, indicates the number of ships that
are defending that planet. Hence, we can denote a map as a list [ρ1,ρ2, · · · ,ρnp],
where each ρi is a tuple 〈xi, yi, si, wi〉. A playable map needs to specify the initial
home planets of the players, which have been fixed as the first two planets ρ1 and
ρ2 because of simplicity. The number of planets np is not fixed and should range
between 15 and 30 as specified by the rules of the Google AI Challenge 2010.
This variable number of planets makes part of the self-adaptive evolutionary
approach described later on.

In order to evaluate the generated maps’ aesthetics , we have defined several
measurements that characterize them. These are indicators related to the spatial
distribution of the planets and their features, such as size and number of ships:

– Planet’s geometric distribution: Let pi = (xi, yi) be the coordinates of the
i-th planet and N the total number of planets, so we defined the average
distance between planets µd and the standard deviation of these distances
σd as follows:

µd =
1

N2

N∑

i=1

N∑

j=1

‖pi − pj‖ (1)

σd =

√√√√ 1

N2

N∑

i=1

N∑

j=1

(‖pi − pj‖ − µd)2 (2)

63

– Planet’s features: Let si and wi be the size (i.e. growth rate) and number
of ships, respectively, of the i-th planet, then we specified the average and
standard deviation of these sizes (µs and σs respectively) and the Pearson’s
correlation between the planet’s size and the number of ships on it ρ as
follows:

µs =
1

N

N∑

i=1

si (3)

σs =

√√√√ 1

N

N∑

i=1

(si − µs)2 (4)

ρ =

∑N
i=1 siwi −Nµsµw

Nσsσw
(5)

where µw and σw are the average and standard deviation of ships, respec-
tively.

These measures has been applied to compare the likelihood between maps
in the following way: each map is characterized by a tuple 〈µd, σd, µs, σs, ρ〉,
then the euclidean distance between these tuples defined the similarity among
the planets they represented. Additionally, we specified two sets of maps, one of
them containing 10 maps with good aesthetics and the other one including 10
non-aesthetic maps. These sets made up a baseline to compare with in a way
that the goal of generating aesthetic maps turned into an optimization problem
about minimizing the distance between generated and aesthetics maps while
maximizing their distance to non-aesthetic maps. The latter was necessary to
insert diversity into the set of generated maps in order to avoid the generation
of maps that were very similar to the aesthetic ones.

3.2 Evolutionary map generation

This procedural map generator used a multi-objective self-adaptive (µ+λ) evo-
lution strategy (with µ = 10 and λ = 100) whose objectives were to reduce
the distance between the generated maps and those considered aesthetics and
to increase the distance to non-aesthetic maps, in order to obtain procedurally
generated aesthetic maps. Mixed real-integer vectors represented the solutions
(i.e., planets): planet’s coordinates (xi, yi) are real-valued numbers but sizes si
and initial number of ships wi are positive integers.

Due to this situation we have considered a hybrid mutation operator that
performed different methods for parameters of either type: for real-valued pa-
rameters, it used a Gaussian mutation; as for integer variables, it considered
a method that generates suitable integer mutations [17,20] – see also [16]. The
latter is similar to the mutation of real values but it uses the difference of two ge-
ometrically distributed random variables to produce the perturbation instead of
the normal distributed random variables used by the former. In either case, the

64

parameters that ruled the mutation were also a part of the solutions, thus pro-
viding the means for self-adapting them. More precisely, regarding real-valued
parameters 〈r1, ..., rn〉 they are extended with n step sizes, one for each pa-
rameter, resulting in 〈r1, ..., rn, σ1, ..., σn〉. The mutation method is specified as
follows:

σ′i = σi · eτ
′·N(0,1)+τ ·Ni(0,1) (6)

r′i = ri + σi ·Ni(0, 1) (7)

where τ ′ ∝ 1/
√

2n, and τ ∝ 1/
√

2
√
n. A boundary rule is applied to step-sizes

to forbid standard deviations very close to zero: σ′i < ε0 ⇒ σ′i = ε0 (in this
algorithm, σ0 comprises a 1% of the parameter’s range). In the case of integer-
valued parameters 〈z1, ..., zm〉 they are extended in a similar way as are real-
valued parameters, resulting in 〈z1, ..., zm, ς1, ..., ςm〉. The following equations
define the mutation mechanism:

ς ′i = max(1, ςi · eτ ·N(0,1)+τ ′·N(0,1)) (8)

ψi = 1− (ς ′i/m)

1 +

√
1 +

(
ς ′i
m

)2

−1

(9)

z′i = zi +

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
−
⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
(10)

where τ = 1/
√

2m and τ ′ = 1/
√

2
√
m.

We considered a “cut and splice” recombination operator that recombines two
individuals by swapping cut pieces with different sizes. This operator selects one
cut point for each individual and then exchanges these pieces, getting two new
individuals with a different number of planets in relation to their parents. This
endows the algorithm with further self-adaptation capacities, hence affecting the
complexity of the maps, i.e., the number of planets in the solutions.

As described in section 3.1, we characterized every map as a vector of five
elements so the euclidean distance between these vectors measures the likelihood
between them, hence the fitness function used to evaluate the individuals is,
precisely, the median euclidean distance from the individual to every map from
the set of aesthetics (minimization objective) and non-aesthetics (maximization
objective) maps.

Considering that we had a multi-objective optimization problem, we decided
to use the selection method of the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [4].

4 Experimental Results

We have used the DEAP library [7] to implement the aforementioned algorithm.
We have run 20 executions of the algorithm during 100 generations each. We
have also computed the cumulative non-dominated set of solutions from every

65

execution – see figure 1. As we can see, there is a linear relationship between
both distances in the middle range of the front. This hints at the density of the
search space and the feasibility of linearly trading increasing distance to good
maps by increasing distance to bad maps.

0

2

4

6

0.5 1.0
distance to aesthetics

di
st

an
ce

 to
 n

on
−

ae
st

he
tic

s

Aesthetics

Non−aesthetics

Non−dominated

Fig. 1. Cumulative set of non-dominated generated solutions (circle) and maps from
aesthetic (triangle) and non-aesthetic (square) baseline sets.

Figure 2 shows how are distributed the values of the different variables that
make up the characterization vector of a map. Note that there are some variables
that are similar in both aesthetics and non-aesthetic maps, such as σd and σs.
However, this variable is higher in the case of the non-dominated maps, which
should explain the high distance between many solutions in the front and the
baseline maps, as seen in figure 1. Another interesting observation is the highly
distributed values of µd in the non-dominated maps, which probably means that
this variable has an uncertain effect over the fitness and hence the search space
for this variable is wider with respect to other variables.

In order to check the validity of the generated maps, we built a support
vector machine [3] (SVM) to classify maps (namely, characterization vectors)
as aesthetic and non-aesthetic. Support vector machines are supervised learning

66

Avg. distance

Stdev. distance

Avg. size

Stdev. size

Corr. size−ships

0.0 0.5 1.0 1.5

N
on

−
do

m
in

at
ed

 m
ap

s

Avg. distance

Stdev. distance

Avg. size

Stdev. size

Corr. size−ships

0.0 0.5 1.0 1.5

A
es

th
et

ic
s

m
ap

s

Avg. distance

Stdev. distance

Avg. size

Stdev. size

Corr. size−ships

0.0 0.5 1.0 1.5

N
on

−
A

es
th

et
ic

s
m

ap
s

Fig. 2. Characterization variables for both non-dominated and baseline maps

Fig. 3. Map’s distribution over the SOM. Red for non-aesthetic, green for aesthetic
and blue for non-dominated.

67

1

10

6

4

3

13

3

15
5

6

11

3

5
5

7

15

5
7

5

1

10

6

1
6

5

8

11

14

(a)

2

9

9

3

1

15

2

10

2 7

10

3

9
6

5

8 3

7

2
4

822
9

4

4

10

16

12

2

(b)

5

10

8

3

1

16

7

10

3

4

8

3

10 9

9

4

5

121210

(c)

1

8

10

1

1

12

2

14

10

8

12

3

8

5

6
14

12

3

11

1

7

4

15

6

8

12

11

12

14

(d)

Fig. 4. Examples of generated maps

68

models that recognize patterns and analyze data. They are able to perform linear
and non-linear classification. The SVM was trained using the same sets of maps
that the evolutionary algorithm has used to calculate the fitness. This SVM
classified as aesthetic every map out of the 4289 non-dominated maps, which led
us to think that the algorithm is capable of generating aesthetic maps.

In addition to the aforementioned classifier, we created a self-organizing map
(SOM) [13] with 32 × 32 process units over a non-toroidal rectangular layout,
using the same maps as the training set. Self-organizing maps are artificial neural
networks that are trained using unsupervised learning to generate a discretized
representation of the input space. As we can see in figure 3, this SOM established
a separation between non-aesthetic (red zones, upper-right) and aesthetic maps
(green zones, lower-left). Moreover, generated maps (blue zones) shared the same
region as aesthetic maps, hence they should be considered aesthetic as well.

5 Conclusions

We have performed an initial approach towards the procedural aesthetic map
generation for the RTS game Planet Wars. We have defined a method of map
characterization based on several of its maps’ geometric and morphologic prop-
erties in order to evaluate how aesthetic a map is. We have used two sets of
maps (aesthetics and non-aesthetics) as a baseline to compare with, and an evo-
lution strategy whose objectives are minimize and maximize the distance of the
generated maps to the aesthetics and non-aesthetics maps of the baseline. The
solutions have been tested with a SVM and a SOM. The SVM has classified
each solution as aesthetic while the SOM was able to make a separation between
aesthetic and non-aesthetic maps (the generated maps shared the same region
as the aesthetic maps).

We have used a geometric characterization of the maps (namely planets’ co-
ordinates), which means that this characterization is affected by rotation, trans-
lation and scaling, thus suggesting the use of other kind of measurements, such
as topological variables, as a potential line of future research.

Acknowledgments This work is partially supported by Spanish MICINN un-
der project ANYSELF1 (TIN2011-28627-C04-01), and by Junta de Andalućıa
under project P10-TIC-6083 (DNEMESIS2).

References

1. Buro, M.: RTS games and real-time AI research. In: Behavior Representation in
Modeling and Simulation Conference. vol. 1. Curran Associates, Inc. (2004)

2. Collins, K.: An introduction to procedural music in video games. Contemporary
Music Review 28(1), 5–15 (2009)

1 http://anyself.wordpress.com/
2 http://dnemesis.lcc.uma.es/wordpress/

69

3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

4. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) Parallel Problem Solving from Nature VI. Lecture Notes in Com-
puter Science, vol. 1917, pp. 849–858. Springer-Verlag, Berlin Heidelberg (2000)

5. Entertainment Software Association: Essential facts about the computer and video
game industry (2012), http://www.theesa.com/facts/pdfs/esa_ef_2012.pdf

6. Font, J., Mahlmann, T., Manrique, D., Togelius, J.: A card game description lan-
guage. In: Esparcia-Alczar, A. (ed.) Applications of Evolutionary Computation,
Lecture Notes in Computer Science, vol. 7835, pp. 254–263. Springer Berlin Hei-
delberg (2013), http://dx.doi.org/10.1007/978-3-642-37192-9_26

7. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13,
2171–2175 (jul 2012)

8. Frade, M., de Vega, F., Cotta, C.: Evolution of artificial terrains for video games
based on accessibility. In: Di Chio, C., et al. (eds.) Applications of Evolutionary
Computation, Lecture Notes in Computer Science, vol. 6024, pp. 90–99. Springer-
Verlag, Berlin Heidelberg (2010)

9. Frade, M., de Vega, F.F., Cotta, C.: Modelling video games’ landscapes by means of
genetic terrain programming - a new approach for improving users’ experience. In:
Giacobini, M., et al. (eds.) Applications of Evolutionary Computing. Lecture Notes
in Computer Science, vol. 4974, pp. 485–490. Springer-Verlag, Berlin Heidelberg
(2008)

10. Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain pro-
gramming: The evolution of terrain generators. International Journal of Computer
Games Technology 2009 (2009)

11. Frade, M., de Vega, F.F., Cotta, C.: Evolution of artificial terrains for video games
based on obstacles edge length. In: IEEE Congress on Evolutionary Computation.
pp. 1–8. IEEE (2010)

12. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content gen-
eration for games: A survey. ACM Trans. Multimedia Comput. Commun. Appl.
9(1), 1:1–1:22 (Feb 2013), http://doi.acm.org/10.1145/2422956.2422957

13. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(1990)

14. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A Review of Computational
Intelligence in RTS Games. In: Ojeda, M., Cotta, C., Franco, L. (eds.) 2013 IEEE
Symposium on Foundations of Computational Intelligence. pp. 114–121

15. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: Procedural map generation for
a RTS game. In: Leiva, A.F., et al. (eds.) 13th International GAME-ON Conference
on Intelligent Games and Simulation, pp. 53–58. Eurosis, Malaga (Spain) (2012)

16. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A procedural balanced map
generator with self-adaptive complexity for the real-time strategy game planet
wars. In: Esparcia-Alcázar, A., et al. (eds.) Applications of Evolutionary Compu-
tation, pp. 274–283. Springer-Verlag, Berlin Heidelberg (2013)

17. Li, R.: Mixed-integer evolution strategies for parameter optimization and their
applications to medical image analysis. Ph.D. thesis, Leiden University (2009)

18. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing up map generation. In:
Chio, C.D., et al. (eds.) Applications of Evolutionary Computation. Lecture Notes
in Computer Science, vol. 7248, pp. 224–233. Springer-Verlag, Málaga, Spain (2012)

70

19. Onuczko, C., Szafron, D., Schaeffer, J., Cutumisu, M., Siegel, J., Waugh, K., Schu-
macher, A.: Automatic story generation for computer role-playing games. In: AI-
IDE. pp. 147–148 (2006)

20. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y.,
Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature III, Lecture
Notes in Computer Science, vol. 866, pp. 139–148. Springer-Verlag, Jerusalem,
Israel (1994)

21. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content cre-
ation for racing games. In: Computational Intelligence and Games, 2007. CIG 2007.
IEEE Symposium on. pp. 252–259 (2007)

22. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3), 172–186 (2011)

71

Code Reimagined: Gamificación a través de la
visualización de código.

J.J. Asensio, A.M. Mora,
P. Garćıa-Sánchez, J.J. Merelo

Departamento de Arquitectura y Tecnoloǵıa de Computadores.
Escuela Técnica Superior de Ingenieŕıas Informática y de Telecomunicación.

Universidad de Granada, España
{asensio, amorag, pablogarcia, jmerelo}@ugr.es

Resumen Las herramientas de visualización de software juegan un pa-
pel muy importante en el desarrollo y mantenimiento de sistemas de soft-
ware complejos. Del mismo modo, también son útiles durante el aprendi-
zaje de los conceptos básicos de programación, los cuales son aprendidos
o enseñados a edades cada vez más tempranas. En esta ĺınea, las técnicas
de gamificación que intentan hacer más atractivas las tareas de progra-
mación juegan un papel importante. Para su aplicación, es necesario
establecer formas innovadoras de representación que habiliten el uso de
metáforas conceptuales llamativas para el estudiante. En este trabajo se
propone una herramienta de visualización de código a nivel de método,
basada en mapa, utilizando videojuegos de plataformas como metáfora,
en este caso, una versión libre de Super Mario Bros.

1. Introducción

La visualización de software consiste en representar gráficamente (en 2D o
3D) de forma estática o dinámica (con animaciones) información relacionada
con la estructura, tamaño, historia o comportamiento de un sistema software. El
objetivo es facilitar la comprensión de diferentes aspectos del sistema. Esta vi-
sualización permite documentar complejos sistemas y detectar anomaĺıas, siendo
también especialmente útil durante el aprendizaje de los conceptos.

Para representar la estructura del software (generalmente orientado a obje-
tos), normalmente, el enfoque consiste en representar las dependencias existentes
entre las diferentes entidades. Estas dependencias puede ser modeladas como un
grafo por lo que la visualización de grafos resulta adecuada. El software a un
nivel más básico, es decir, a nivel de método, puede ser también representado de
esta forma, mediante un diagrama de flujo. Este diagrama está basado en nodos
y enlaces.

Sin embargo, el código de un método cumple además con las reglas sintácti-
cas del lenguaje, por lo que también puede ser representado mediante su árbol
sintáctico abstracto. En este árbol los nodos representan los diferentes elemen-
tos del lenguaje utilizados y las aristas su relación de inclusión (por ejemplo, el
nodo IF tiene como nodos hijos la parte THEN y la parte ELSE, cada una con

72

sus propios nodos hijos). A diferencia del diagrama de flujo, la visualización de
un árbol es mucho más flexible. La jerarqúıa de un árbol puede ser visualizada
mediante un mapa (sin utilizar flechas) [1].

Esta forma de visualización es susceptible de ser combinada con técnicas de
gamificación [2]. Para ello, este trabajo propone una metáfora conceptual que
consiste en utilizar el mapa de un videojuego de plataformas como representación
del árbol sintáctico abstracto del programa. Esta visualización, además, permite
la analoǵıa dinámica entre ambos contextos semánticos, es decir, el protagonista
del videojuego corre por el mapa y el ordenador ejecuta (corre) el programa.
Esta metáfora es útil para el aprendizaje temprano de los elementos de control
habituales en los lenguajes de programación.

Para la implementación de una herramienta de visualización dinámica de
estas caracteŕısticas se ha utilizado Java y Eclipse. El resto de este trabajo
está organizado de la siguiente forma: en la sección 2 se explora el contexto
taxonómico, se discute el concepto de legibilidad del código y su relación con
algunas herramientas existentes para el aprendizaje temprano de la programa-
ción, se describen las técnicas gamificación y la importancia de su papel en la
metáfora conceptual. En la sección 3 se define la herramienta propuesta concre-
tando sus caracteŕısticas. En la sección 4 se describen los detalles principales de
la implementación. En la sección 5 se establecen las conclusiones obtenidas y la
continuación de este trabajo junto con los agradecimientos.

2. Contexto

2.1. Contexto taxonómico del uso de gráficos en programación

Los sistemas que usan gráficos para programar, depurar y entender la compu-
tación en general han sido motivo de investigación desde el inicio de la informáti-
ca. La idea de hacer más accesible la programación a cualquier tipo de usuario
ha sugerido a la utilización de gráficos o lenguajes visuales para la confección de
programas. De igual forma el uso de gráficos facilita la comprensión de lo que
el programa hace aśı como su depuración cuando se enseña a programar a los
estudiantes.

En este contexto muchas veces los términos utilizados para el uso de gráficos
son a menudo informales o confusos. A finales de los 80 Myers [3] estableció una
taxonomı́a más formal para los diferentes sistemas gráficos utilizados en aquel
entonces y que continúa siendo válida. De esta forma establece la visualización
de programas como el uso de gráficos que ilustran algún aspecto del programa o
de su ejecución. En la figura 1 se muestra un ejemplo de visualización de código
de forma estática.

En concreto se clasifican según se visualiza el código, los datos o el algoritmo.
Tal visualización además puede ser estática o dinámica dependiendo de si existe
algún tipo de animación mientras se ejecuta el programa [4]. La propuesta de
este trabajo constituye una forma de visualización de código dinámica.

En este trabajo se propone una visualización dinámica de programas usando
gamificación para mejorar la experiencia del programador, especialmente para

73

Figura 1. El diagrama de flujo visualiza el código asociado de forma estática.

el aprendiz, aunque no exclusivamente. El objetivo es añadir un valor expresivo,
documentativo y estético al software a nivel de función o método.

La justificación se fundamenta en que el sistema visual humano está optimi-
zado para procesar información multidimensional mientras que la programación
convencional, sin embargo, es representada como un texto unidimensional. En
este sentido, la capacidad del código de ser entendido por un humano, es decir,
su legibilidad, es discutida a continuación y evaluada a través de algunas he-
rramientas de ejemplo. En tales ejemplos se pone de manifiesto la necesidad de
exploración y explotación de nuevas metáforas conceptuales que, aplicadas a un
contexto puramente computacional, sean adecuadamente flexibles para expresar,
resumir, documentar y comprender mejor el código. El videojuego de platafor-
mas, como metáfora de programa, resulta ser especialmente adecuado para la
descripción de los lenguajes Turing-completos, puesto que es universalmente co-
nocido y ha surgido en el contexto de la programación.

2.2. Legibilidad

A menudo se hace analoǵıa entre el texto de un programa y el texto narrativo.
La legibilidad en este sentido, como concepto, es decir, la capacidad de que algo
sea léıdo por un humano, es una idea general muy amplia. El término “léıdo”
implica todas las fases del procesamiento del lenguaje a fin de que el significado
sea entendido por el lector. Con esta definición en mente vemos claramente

74

diferencias sustanciales entre la legibilidad de un texto narrativo y el código de
un programa.

La legibilidad del texto narrativo depende de la historia que se cuenta y de
cómo el lector puede representar, mediante su imaginación, el significado natural
de esta historia conforme a su experiencia. Si la historia es confusa o carece de
sentido, el texto es poco legible. Sin embargo, es posible que la historia tenga
pleno sentido y sea clara y que el texto siga siendo poco legible, por ejemplo,
imaginemos un niño leyendo un art́ıculo cient́ıfico. En este caso la experiencia
del lector es el factor predominante.

Si aplicamos esta misma idea al texto de un programa, enseguida nos damos
cuenta de que la “historia” que expresa el programa poco tiene que ver con
la experiencia del lector. Su significado existe en un contexto computacional,
matemático-lógico completamente distinto, generalmente abstracto, y por tanto
contrapuesto, al mundo real del lector. Para que el texto del programa sea legible
por tanto sólo hay dos opciones:

o bien forzamos el contexto semántico del programa para que se adecue a la
experiencia natural del lector,
o bien reforzamos la experiencia del lector en el contexto de la programación.

La semántica del mensaje. En el primer caso se intenta conseguir que el
lector se introduzca en la programación partiendo de su experiencia natural.
Su alcance, si bien importante, está limitado a la generación de programas cuya
salida es multimedia y presenta alguna historia interactiva. El código usado para
este fin concreto se limita a un conjunto espećıfico de instrucciones. Incluso aśı,
este código puede no ser legible hasta que finalmente se ejecute.

Algunas herramientas que utilizan este enfoque son:

Squeak Etoys: Es un entorno de desarrollo dirigido a niños y un lenguaje
de programación basado en prototipos y orientado a objetos [5]. Dirigido
e inspirado por Alan Kay para promover y mejorar el constructivismo. Los
principales influyentes en esta herramienta son Seymour Papert y el lenguaje
Logo. La figura 2 muestra un programa de ejemplo.
Alice: Alice [6] es un lenguaje de programación educativo libre y abierto
orientado a objetos con un entorno de desarrollo integrado (IDE). Está pro-
gramado en Java. Utiliza un entorno sencillo basado en arrastrar y soltar
para crear animaciones mediante modelos 3D. Este software fue desarrolla-
do por los investigadores de la Universidad Carnegie Mellon, entre los que
destaca Randy Pausch.
Scratch: Es un entorno de programación online [7] que facilita el aprendizaje
autónomo. Fue desarrollado por el “the Lifelong Kindergarten group” en el
Media Lab del MIT (Massachussets Institute of Tecnology) por un equipo
dirigido por Mitchel Resnick y apareció por primera vez en el verano de
2007 [8]. La figura 3 muestra un programa de ejemplo. Los elementos de
programación son representados como bloques de distinto color que encajan
entre śı.

75

Figura 2. Un programa diseñado en Etoys para controlar un coche sigue-ĺınea.

Figura 3. El mismo programa de la figura 1 diseñado con Scratch.

La experiencia del lector. El segundo caso, por otra parte, tiene un alcance
mucho más amplio y por tanto, más dif́ıcil de conseguir. Es necesario trabajar
multitud de conceptos como los algebraicos, lógicos y matemáticos desde una
edad temprana en el colegio. Además, la naturaleza abstracta de estos conceptos
dificulta su propia representación visual. En este sentido, algunos conceptos son
más susceptibles que otros de ser visualizados, como por ejemplo, los conjuntos
y sus operaciones, las funciones matemáticas, o los vectores, son más fáciles de
visualizar que otros como la probabilidad, las derivadas o las diferentes part́ıculas
subatómicas. Esta visualización es importante durante el aprendizaje.

Como vemos, el concepto general de legibilidad en el ámbito de la progra-
mación no está claro. El motivo principal es claramente la confusión de no tener
en cuenta que el verdadero lector de un programa no es una persona, sino una
máquina.

76

Desde este enfoque más amplio, es posible arrojar más luz sobre la com-
prensión de los procesos subyacentes en el aprendizaje de la programación. De
aqúı la importancia de la documentación de código [9], a menudo descuidada. Es
necesario abordar una automatización de generación de documentación legible
entendiendo esta documentación, no sólo como un contenido añadido al progra-
ma, sino más bien como una caracteŕıstica intŕınseca durante la generación del
programa [10]. En este paradigma el programador escribe y tanto el humano
como la máquina pueden leer. Puesto que la máquina y el ser humano leen de
forma diferente es necesario proveer al programador de diferentes herramientas
para generar paralelamente al código, distintas representaciones semánticamen-
te representativas. Estas herramientas son especialmente importantes durante el
aprendizaje.

En este trabajo se propone una representación metafórica para visualizar
el flujo de un programa de forma dinámica. La semántica utilizada para esta
metáfora toma prestada la experiencia de la persona al jugar a videojuegos
para hacer más intuitivo y atractivo el proceso de aprendizaje en el uso de las
estructuras de control básicas de un programa escrito en un lenguaje imperativo.
La representación del código en forma de juego está motivada por la aplicación
de técnicas de gamificación en el contexto educativo.

2.3. Gamificación

La gamificación consiste en el uso de mecánicas de juego o pensamiento
de juego en un contexto ajeno al juego, con el fin de conseguir determinados
objetivos. La gamificación aprovecha la predisposición psicológica del humano a
participar en juegos. Las técnicas utilizadas consisten básicamente en tres tipos:

A) Ofrecer recompensas por la realización de las tareas.
B) Aprovechar la competitividad, haciendo visibles las recompensas entre
los jugadores.
C) Hacer más atractivas tareas ya existentes que normalmente pueden ser
aburridas.

El campo de la educación presenta un gran potencial de crecimiento para la
gamificación [11]. Existen multitud de ejemplos de uso de gamificación para el
aprendizaje. Quizá el más llamativo es la escuela neoyorquina Quest to Learn
[12], donde todo el proceso de aprendizaje está dirigido al juego.

Un ejemplo concreto de gamificación aplicado al aprendizaje de programación
es Code Academy [13]. Esta plataforma online interactiva ofrece clases gratuitas
de programación con diferentes lenguajes. La técnica de gamificación usada en
este contexto es la de recompensar y motivar la competitividad de los estudiantes,
es decir las técnicas A) y B).

En relación a la tercera técnica enumerada, entre muchos ejemplos, pode-
mos destacar ParticleQuest. ParticleQuest trata de enseñar a los estudiantes de
f́ısica las part́ıculas subatómicas. La metáfora consiste en identificar las part́ıcu-
las subatómicas como personajes enemigos de un videojuego tipo RPG (Role-
Playing Game). Las diferentes caracteŕısticas de cada part́ıcula identifican las
habilidades y morfoloǵıa de los diferentes personajes.

77

Figura 4. Ejemplo de gamificación: los enemigos en el juego ParticleQuest representan
las diferentes part́ıculas subatómicas.

La herramienta que se presenta en este trabajo se encuadra dentro de este tipo
de técnicas. Pues al visualizar el texto correspondiente al código del programa
como un escenario de un videojugo, resulta familiar y divertido al usuario, y se
facilita aśı su comprensión e interpretación.

2.4. Metáfora conceptual

La idea de utilizar metáforas para la representación y comprensión de concep-
tos abstractos es fundamental durante el aprendizaje. En matemáticas se utilizan
a menudo para enseñar todo tipo de conceptos. Algunos śımbolos matemáticos,
como por ejemplo, los paréntesis, pueden ser interpretados como metáforas, en el
sentido de que encierran expĺıcitamente un determinado contenido. Podŕıamos
decir que su uso como śımbolo posee un significado visual añadido. Existe sin
embargo un inconveniente cuando se hace un uso intensivo de estos śımbolos
ya que pierden su capacidad explicativa, como se observa a continuación en el
siguiente programa escrito en Lisp:

(defun factorial (n) (if (<= n 1) 1 (* n (factorial (- n 1)))))

Otro ejemplo es el uso de flechas para indicar transiciones de un punto a otro.
Al igual que con los paréntesis, al aumentar el número de flechas, aumenta la
dificultad de comprensión del diagrama. Además al ser utilizadas frecuentemente
en diferentes contextos y con diferente significado, las flechas adquieren un cierto
nivel de abstracción, que devalúa todav́ıa más su capacidad aclaratoria.

Con estos ejemplos se intenta ilustrar la importancia y necesidad de encontrar
representaciones visuales más concretas que faciliten la comprensión, documen-
tación y el aprendizaje de forma diferenciada para los conceptos que se utilizan
en programación y que además puedan ser generadas automáticamente a partir
del código.

78

Para este propósito, es necesario conseguir un compromiso adecuado entre
la abstracción asociada a los elementos visuales y su analoǵıa semántica con el
elemento representado. Además resulta también útil hacer que estas representa-
ciones sean atractivas para el estudiante durante el aprendizaje.

3. Propuesta

Este trabajo propone una representación metafórica para visualizar dinámi-
camente los elementos del código de un programa. La metáfora utilizada está ba-
sada en técnicas de gamificación. La idea es hacer más atractiva la tarea de
codificación en programación. Para ello se utilizan videojuegos de plataformas.
Quizás el videjouego de este tipo más famoso es Super Mario, para este trabajo
se ha utilizado una versión libre de este juego llamada Secret Maryo Chronicles.
La metáfora utilizada consiste en visualizar un método o una función, como una
plataforma en el escenario del videojuego. Todo lo que hay sobre esta platafor-
ma será el contenido del método. El uso de las estructuras de control básicas de
un programa se corresponden con otras plataformas o elementos del videojuego
por los que el personaje principal se mueve. Esta analoǵıa resulta muy intuitiva
puesto que relaciona la dinámica de ambos contextos. En concreto, los elementos
básicos que pueden ser representados incluyen las sentencias de control t́ıpicas
como el condicional, el switch, los bucles y la instrucción de retorno como se
explica a continuación:

Condicional: Es representado mediante una plataforma elevada. Si la con-
dición se cumple, el personaje saltará a la plataforma, si no, pasará por
debajo.
Switch: Es representado mediante varias plataformas elevadas apiladas en
vertical una para cada caso. El personaje saltará a la plataforma del caso
que se cumpla.
Bucle: Es representado mediante una tubeŕıa o similar por donde el personaje
se introduce y aparece al principio del bucle.
Retorno: Una puerta representa la devolución de datos del método.

Para que el flujo de programa pueda ser representado al menos se requieren
estos elementos. Existen multitud de videojuegos de plataformas que cumplen
con estos requisitos. En este aspecto la visualización puede ser personalizada
por el usuario eligiendo los gráficos relacionados con el juego que le resulte más
atractivo. Además, otros elementos del lenguaje pueden ser representados me-
diante diferentes gráficos del juego. Por ejemplo, las expresiones pueden consistir
en cajas que el personaje golpea para ver su contenido. Según este esquema el
programa de las figuras 1 y 3 queda representado en la figura 5.

Otra caracteŕıstica interesante para dar más capacidad de expresión a la re-
presentación visual (en el sentido opuesto al ejemplo comentado de las flechas
de la sección anterior), es la posibilidad de elegir diferentes texturas para las
plataformas en el contexto del juego para diferentes partes del código. Por ejem-
plo, supongamos que hay una parte del código más interesante o que requiere

79

Figura 5. Visualización propuesta para el programa de ejemplo de la figura 1 y 3. El
bucle está representado como la plataforma que hay entre los dos tubos, el IF dentro
del bucle es otra plataforma interior y las diferentes expresiones son cajas.

mayor atención, entonces se pueden utilizar gráficos correspondientes a escena-
rios más dif́ıciles del juego como mazmorras, escenarios de lava o nieve, que sean
fácilmente identificables. En la figura 6 vemos un ejemplo.

Figura 6. Visualización donde se ha resaltado todo el código del bucle utilizando pla-
taformas con nieve.

El lenguaje para el que se ha implementado la herramienta de visualización
propuesta es Java. El motivo de esta elección es el amplio uso del mismo, y la
facilidad que poseen las herramientas de desarrollo para ser extendidas.

4. Implementación

Para implementar esta herramienta de visualización dinámica se ha opta-
do por utilizar el lenjuaje Java sobre Eclipse. Eclipse es una plataforma ex-
tensible para construir IDEs. Proporciona servicios básicos para utilizar varias
herramientas que ayudan en las tareas de programación. Los desarrolladores de
herramientas pueden contribuir a la plataforma envolviéndolas en forma de com-
ponentes llamados plugins. El mecanismo básico es añadir nuevos elementos de

80

procesamiento a los plugins existentes. Mediante un manifiesto XML se descri-
be la forma en que el entorno de ejecución de Eclipse activará y manejará las
instancias del plugin.

El plugin Code Reimagined consiste en una vista añadida a la perspectiva
Java para mostrar la imagen generada a partir del código que se está editando.

Figura 7. Esquema del plugin como una nueva vista en Eclipse.

Para analizar el código se ha usado el patrón “visitor” sobre el árbol sintáctico
abstracto del código Java. Recorriendo este árbol se obtiene otro árbol cuyos
nodos representan las áreas a dibujar en la vista. Estos nodos heredan de una
clase abstracta y especifican cómo se pinta el elemento de programación dado y
qué recuadro resulta de ello. Para obtener la imagen en la vista, basta hacer un
recorrido de este árbol (sin importar el orden) y llamar al método que dibuja
recursivamente los sprites de cada nodo.

Para representar la dinámica de Maryo moviéndose sobre la vista se ha im-
plementado un “listener” para el cursor del editor de Java, de forma que el
personaje aparecerá en el área correspondiente al elemento Java que haya inme-
diatemente después (figura 8). La manera de hacerlo ha sido utilizar una tabla
hash indexando los nodos correspondientes a los elementos Java según su offset
en el archivo.

Otra funcionalidad implementada es el posicionamiento del cursor en el editor
Java, al hacer doble clic sobre el elemento correspondiente del mapa.

Este plugin se presentó al VII Concurso Universitario de Software Libre 1 que-
dando finalista en la final local de la Universidad de Granada. El código está dis-
ponible para descarga en https://github.com/javiplay/code-reimagined.

5. Conclusiones

En el contexto taxonómico de la visualización de programas y partiendo del
concepto de legibilidad del código, este trabajo ha identificado la necesidad de

1 www.concursosoftwarelibre.org

81

Figura 8. El plugin Code Reimagined muestra el programa de la figura 1 y 3 una vez
integrado en el entorno Eclipse. Maryo aparece sobre el área dibujada correspondiente
al elemento Java que hay a continuación a partir de la posición actual del cursor.

desarrollar técnicas de visualización automáticas, donde la metáfora conceptual
juegue un papel básico, no sólo para el aprendizaje sino también para la do-
cumentación y la comprensión de las tareas y conceptos relacionados con la
programación.

Para este tipo de visualización se ha establecido un principio básico de diseño
que consiste en maximizar la precisión semántica de las representaciones minimi-
zando la pérdida de analoǵıa con los conceptos representados. Para la aplicación
de este principio se ha comprobado la utilidad de las técnicas de gamificación,
concretamente el uso de videojuegos de plataformas para representar el flujo de
un programa.

La representación propuesta es independiente del lenguaje y por tanto, com-
plementaria a cualquier software de programación y especialmente adecuado
para herramientas de aprendizaje constructivista como Scratch. Una vez concre-
tados los detalles de esta representación, se ha desarrollado una herramienta de
visualización dinámica de código Java en forma de plugin para Eclipse.

Como ĺıneas de actuación futura, además de añadir nuevas caracteŕısticas,
se propone la realización de experimentos para validar la efectividad de esta
herramienta. En caso de obtener resultados positivos, se podŕıa aplicar esta
forma de visualización “gamificada”, a otro tipo de diagramas relacionados con
la programación orientada a objetos.

82

Agradecimientos

Este trabajo ha sido apoyado por el proyecto de excelencia EVORQ con refe-
rencia P08-TIC-03903 de la Junta de Andalućıa, el proyecto Anyself con referen-
cia TIN2011-28627-C04-02 del Ministerio de Innovación y Ciencia y el proyecto
83, CANUBE, concedido por el CEI-BioTIC de la Universidad de Granada.

Referencias

1. S, D.: Visualization basics. In: Software Visualization. Springer Berlin Heidelberg
(2007) 15–33

2. Kumar, B.: Gamification in education-learn computer programming with fun.
INTERNATIONAL JOURNAL OF COMPUTERS & DISTRIBUTED SYSTEMS
2(1) (2012) 46–53

3. Myers, B.A.: Taxonomies of visual programming and program visualization. Jour-
nal of Visual Languages & Computing 1(1) (1990) 97–123

4. Urquiza-Fuentes, J., Velázquez-Iturbide, J.Á.: A survey of successful evaluations
of program visualization and algorithm animation systems. ACM Transactions on
Computing Education (TOCE) 9(2) (2009) 9

5. Etoys, S.: http://www.squeakland.org/ (2013)
6. Alice: http://www.alice.org/ (2013)
7. Scratch: http://scratch.mit.edu/ (2013)
8. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-

nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Communications of the ACM 52(11) (2009) 60–67

9. Tenny, T.: Program readability: Procedures versus comments. Software Enginee-
ring, IEEE Transactions on 14(9) (1988) 1271–1279

10. Baecker, R.: Enhancing program readability and comprehensibility with tools for
program visualization. In: Software Engineering, 1988., Proceedings of the 10th
International Conference on, IEEE (1988) 356–366

11. Lee, J.J., Hammer, J.: Gamification in education: What, how, why bother? Aca-
demic Exchange Quarterly 15(2) (2011) 146

12. Salen, K., Torres, R., Wolozin, L.: Quest to learn: Developing the school for digital
kids. MIT Press (2011)

13. Codecademy: http://www.codecademy.com/ (2013)

83

Impacto de las nuevas tecnologías en la educación infantil

Fernando Palero, David Camacho

 Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid,

C/Francisco Tomás y Valiente 11, 28049 Madrid.
fpalero86@gmail.com, david.camac@uam.es

http://aida.ii.uam.es

Resumen. Los colegios actualmente tienen la necesidad de nuevas metodolo-
gías de aprendizaje, estas metodologías están estrechamente relacionadas con el
entorno socio-tecnológico actual. Aprovechando el auge actual de las nuevas
tecnologías y el interés de los niños por aprender a utilizarlas, se han diseñado
varios juegos educativos para niños comprendidos entre 3 y 5 años. Como ele-
mentos tecnológicos básicos se utilizará la pizarra digital y el sensor Kinect©.
Estos dispositivos tienen la ventaja de permitir interactuar tanto a educadores
como a niños con las manos desnudas, ayudando a que la interacción sea más
intuitiva y favoreciendo el aprendizaje kinestésico. Con el método kinestésico la
información que recibe el niño la asocia a las sensaciones y a los movimientos
corporales. El presente trabajo muestra el diseño inicial de un conjunto de jue-
gos destinados a niños de primeros cursos de educación infantil, así como una
evaluación cualitativa inicial por parte de los educadores que han utilizado en
varias sesiones los juegos desarrollados.

Palabras clave: pedagogía, educación infantil, psicomotricidad, aprendizaje
innovador, aprendizaje visual, aprendizaje kinestésico.

1 Introducción

Actualmente con el auge de la tecnología, los niños y adolescentes se interesan por los
dispositivos electrónicos, tabletas, Smartphone, videoconsolas, etc. Aprovechando la
inquietud de los jóvenes y niños por la tecnología se han diseñado diversos
videojuegos para niños comprendidos entre los 3 y 5 años. El objetivo de los juegos
es ayudar a desarrollar las capacidades básicas de los niños adaptándose a los
contenidos educativos del centro y que para el educador sea fácil cambiar estos
contenidos en función del temario.

La integración de videojuegos educativos en el aula presenta ciertos problemas. El
coste y mantenimiento de algunos dispositivos. Estos ocurre con las tabletas, no es un
dispositivo en si costoso pero es necesario tener un por alumno. Por este motivo,
hemos decido utilizar la cámara Kinect©, su coste no supera los 100€ y con una por
clase es suficiente, ya que la cámara es capaz de detectar a más de un jugador.

Por otra parte, tenemos el problema del contenido. En un principio los juegos que se
implementaron eran muy específicos. Un ejemplo de ello es el juego de las horas, que

84

hablaremos de él más adelante, que solo sirve para aprender la hora. Después de la
primera entrevista con los educadores decidimos hacer juegos más genéricos, donde
el contenido pueda variar pero la esencia sea la misma. Con esta idea hicimos el juego
de los animales, la idea base es el juego de las parejas. Debes asociar la imagen del
animal con el nombre. De esta forma si el temario cambia lo único que debemos hacer
es cambiar las imágenes y los nombres.

Superando estos inconvenientes podemos conseguir que la educación sea gamificable,
es decir, mediante el uso de videojuegos motivamos y captamos el interés del alumno
hacia la asignatura. La técnica motivacional más utilizada en los videojuegos consiste
en otorgar recompensas por los logros obtenidos, en este caso en el avance en el
temario, entregando premios denominados badges.

Existen diversas plataformas educativas que buscas estos objetivos. Entre ellas
tenemos MinecratfEdu (http://minecraftedu.com/). Esta plataforma utiliza el jeugo
Minecraft (https://minecraft.net/) y permite la creación de mundos en los que los
alumnos pueden construir diferentes elementos, así como “descubrir” zonas del
terreno, cuevas, etc. Los alumnos se enfrentan a retos que les ayudan a aprender el
contenido de la asignatura.

También encontramos plataformas educativas que utilizan Kinect©.
KinectEDucation, su objetivo es crear una "educación conectada" mediante el
desarrollo de aplicaciones, promoción e integración de estos juegos en las aulas. Se
trata de exhibir la evolución de Kinect© , la exploración de los juegos en la
educación, la programación en las aulas, y la integración de las actividades de
Kinect© en la educación.

Otras plataformas educativas que encontramos son: futurelab(http://futurelab.org.uk/),
su objetivo es promover la innovación en la enseñanza y el aprendizaje utilizando la
tecnología. The Education Arcade(http://www.educationarcade.org/), buscan diseñar
juegos que ayuden a un aprendizaje natural y se ajuste a las necesidades educativas de
los jugadores. Moodle (https://moodle.org/), es una aplicación web libre que los
educadores pueden usar para crear páginas web educativas, esta plataforma es
utilizada por Google y Loreal para hacer la selección de personal.

Para el desarrollo de los juegos se ha empleado la arquitectura XNA que permite la
creación de videojuegos mediante el lenguaje de programación C# sobre Windows.
Una de las principales características de XNA es la de la simplicidad en el desarrollo
de juegos, puesto que la librería XNA se encarga de los aspectos más técnicos del
juego. Permitiendo que el programador solo se centre en la lógica del juego

El resto del artículo se ha estructurado en las siguientes secciones. La sección 2
describe brevemente el conjunto de juegos diseñados y sus principales
funcionalidades. La sección 3 proporciona una descripción del conjunto de clases
desarrolladas, y se muestra parte de la reusabilidad en el diseño que se ha tratado de
seguir con objeto de poder adaptar el esquema de juego propuesto a futuros
desarrollos.

85

2 Diseño de los Juegos

A continuación se describirán los juegos desarrollados para el sensor Kinect© y la
pizarra digital. Según el dispositivo considerado (únicamente la pizarra digital y/o el
sensor Kinect©) la interacción entre el jugador y el juego variará permitiendo varios
tipos de juegos.

Con el sensor Kinect© se ha querido imitar el funcionamiento del ratón utilizando
gestos corporales. Para indicar al juego que se desea mover el cursor debemos mover
la mano, de este modo el puntero se moverá siguiendo el camino que describa la pal-
ma de la mano y para simular el clic del ratón simularemos que queremos pulsar un
botón imaginario en el aire. Se trata de una interacción similar a la actualmente des-
plegadas en la televisiones “smart TV” de alta gama que incorporan cámaras web y
software para reconocimiento de la mano.

Para las pizarras digitales, simularemos el desplazamiento del puntero deslizando uno
o varios dedos sobre la superficie de la pantalla. Para simular el clic debemos poner el
dedo encima del objeto que queremos clicar y pulsar sobre la zona de la pantalla don-
de esté dibujado.

La selección de los juegos diseñados se basan en un análisis inicial por parte de los
autores del enorme conjunto de juegos educativos (tanto gratuitos como de pago)
disponibles en el mercado. De este análisis se decidió definir juegos que tratasen de
reforzar conceptos muy básicos como el aprendizaje de la hora, vocabulario o el
aprendizaje de colores en niños. Posteriormente, y tras diversas reuniones con educa-
dores se crearon otros juegos adaptados a una metodología educativa concreta, y que
pudiese ser directamente utilizable dentro del proceso educativo.

2.1 El Juego de las Horas

La finalidad del juego es que el niño aprenda cómo se representa la hora en los relojes
digitales y analógicos, mejorar la coordinación ocular-manual y la psicomotricidad
fina. Para ello nos ayudamos de dos relojes virtuales: un reloj digital y otro analógico.
Para este juego se han desarrollado dos versiones, una versión para el sensor Kinect©
y otra para ratón.

Fig. 1. Juego de la hora, versión Kinect©.

86

El reloj digital indica la hora que el niño debe marcar en el reloj analógico, la hora en
formato digital se representa, en formato 12 y 24 horas. Para ayudar a que el niño
asocie las horas a las diferentes partes del día el fondo del juego cambia, en el
ejemplo mostrado en la Figura 1, al tratarse de las cuatro de la mañana, el fondo
muestra un paisaje nocturno. En la versión para Kinect©, las manecillas del reloj
analógico se mueven cuando se pulsan los botones (más o menos) de la hora o los
minutos respectivamente. Para comprobar si el niño ha puesto la hora correcta se debe
pulsar el botón comprobar que está encima del reloj digital. En caso de acierto, o
fallo, se mostrará un mensaje, en caso de error se puede volver a intentar introducir la
hora, en caso de acierto se genera una nueva hora.

En la versión para pizarra digital el funcionamiento es similar, lo único que cambia es
la forma de mover las manecillas. Para mover la manecillas se debe hacer clic sobre
ellas y sin levantar el dedo de la pantalla arrastrar la manecilla a la posición deseada.
Esta interacción permite al niño tener el control de las manecillas al “arrastrar” la
horaria o el minutero hasta la posición deseada.

Fig. 2. Juego de la hora, versión pizarra táctil.

2.2 El Juego de las Vocales y las Consonantes

En este juego el niño aprenderá las letras del abecedario en inglés o en español, desde
el menú del mismo puede elegirse el idioma. Este juego se ha diseñado
principalmente pensando en el sensor Kinect©. Al inicio de cada ronda del juego el
niño escuchará la pronunciación de la una letra del abecedario, en inglés o español, y
deberá seleccionar la letra correcta. Cada niño tiene tres intentos para acertar la letra,
si lo consigue antes de tres intentos aparece un mensaje felicitando al niño, en caso
contrario aparecerá un mensaje animando al niño para que vuelva a intentarlo.

87

Fig. 3. Juego de las vocales y consonantes.

Este juego, como el anterior, trata de ayuda a mejorar la coordinación ócular-manual y
la psicomotricidad fina. Además de ayudar en el aprendizaje audiovisual del
abecedario de una forma divertida y entretenida.

2.3 Juego de Pintar

Este juego está desarrollado para interactuar con el sensor Kinect©, al igual que en el
juego de las vocales y consonantes cuando empieza la ronda el niño escuchará la
pronunciación del color en inglés y deberá seleccionar el color correspondiente de la
paleta de colores. Hasta que no se seleccione el color correcto el jugador no podrá
empezar a pintar dentro de las figuras, éstas las selecciona el juego de forma aleatoria
y las que pueden aparecer son el círculo, el triángulo o el cuadrado.

Para pintar el niño deberá mover el cursor dentro de la figura y estirar el brazo. El
juego calcula el porcentaje de píxeles coloreados dentro y fuera de la figura, si supera
el umbral de píxeles coloreados dentro de la figura aparecerá un mensaje de
felicitación y en el caso contrario aparecerá un mensaje animando al jugador a que lo
intente otra vez.

Fig. 4. Juego de pintar.

88

2.4 Juego de los animales

El juego de los animales consiste en seleccionar la imagen que se corresponda con el
nombre del animal. Se puede elegir la dificultad del juego: normal o difícil. En el
nivel fácil aparecen animales que su letra inicial es diferente, y en el nivel difícil los
nombres empiezan por la misma letra. Por ejemplo, en la Figura 5 se muestra un
ejemplo del modo normal. En este ejemplo se muestran las imágenes de un Erizo y un
Zorro, en el texto “erizo” el niño debe reconocer la primera letra, si puede realizar la
correlación fonética entre el sonido de la vocal y el nombre del animal (que
previamente han estudiado en el aula) identificará el animal.

Esto se debe a que los niños para aprender a leer en un principio aprenden a asociar
los fonemas con las grafías. En el caso que dos palabras contengas grafías parecidas,
como burro y buey, el niño no es capaz de diferenciarlas fácilmente.

El niño tutelado por un adulto, en este caso el profesor, debe de pronunciar el nombre
y asociarlo correctamente con el animal.

Fig. 5. Juego de los animales.

Este juego ha sido desarrollado para interactuar con la pizarra digital o con Kinect©.
Si se utiliza la pizarra digital para elegir el animal se debe pulsar sobre él con el dedo.
Si el jugador acierta aparecerá una cara sonriente, y si falla una cara triste.

Con el sensor Kinect© se utilizarán posturas para ejecutar órdenes en el juego. Se
levantará la mano derecha para seleccionar la imagen derecha y lo mismo con la mano
izquierda.

89

3 Estructura de los Juegos

Para desarrollar los juegos se ha utilizado el lenguaje de programación C#, la librería
XNA, la librería de Kinect© y se han implementado clases que permiten la
comunicación con la Kinect© y la detección de gestos y posturas.

Las clases desarrolladas son:
 La clase Esqueleto. Se sincronizar con el sensor Kinect© y recibe los datos de

los jugadores. Esta información se utilizará posteriormente para detectar gestos y
posturas.

 La clase GestureDetector es la encargada de detectar los gestos.
 La clase PostureDetector es la encargada de detectar las posturas.

Las clases GestureDetector y PostureDetector se añaden a las listas de
gestos y posturas de la clase Esqueleto, se comprueba si el jugador ha realizado
algunas de estas acciones y se lanza el evento correspondiente.

Fig. 6. Diagrama de clases.

3.1 Reutilización del juego de los Animales

Como hemos comentado anteriormente, los primeros juegos que hicimos menciona-
dos en los aparatado 2.1, 2.2 y 2.3, son juegos con contenido específico y difícil de
adaptar al temario docente.

Con la idea de poder hacer un juego que se adapte al contenido del temario se pensó
en hacer una versión del juego de las parejas. Como hemos explicado en el apartado
2.4, el juego consiste en emparejar la imagen con el nombre del animal.

Actualmente la adaptación del contenido se realiza manualmente. Las imágenes se
guardan en una carpeta con formato jpg y con el tamaño de 480x600 pixeles. Cuando

90

se carga el juego recorremos la carpeta de imágenes y almacenamos los nombres de
las fotos en un diccionario, en la sección 3.2 hablaremos del diccionario. En esta ver-
sión del programa el nombre de la imagen corresponde con el del animal.

Por otro lado, también se puede cambiar el fondo del juego, este proceso también es
manual. La imagen que hemos decidido poner como fondo debe tener como nombre
fondo. jpg y cuando se cargue el juego se visualizará. El fondo del juego ayuda al
jugador a ponerse en el contexto educativo. En este caso, como estamos con los ani-
males el fondo es un bosque.

3.2 Nivel de dificultad del Juego de los Animales

Para modificar el nivel de dificultad en el juego de los animales descrito en la sección
2 se diseñó un algoritmo simple que permite seleccionar una etiqueta (sobre un
conjunto prefijado) en función del tipo de animal que se está mostrando.

Se ha utilizado un diccionario en el cual se almacenan todas las palabras que empiezan
por la misma letra en una lista (en este caso de animales). En el modo de juego
“normal” se accede aleatoriamente a dos listas del diccionario, las cuales representan
letras diferentes, y se escoge un animal aleatorio de cada lista. Para el modo “difícil”
escogemos de una lista a dos animales (de esta forma garantizamos que cuando menos
el primero de los caracteres coincidirá).

3.3 Comparativa entre la cámara Kinect© y pizarra digital

El diseño del nuevo juego (animales) permitía el aprendizaje incremental de las
consonantes mediante la fonética de las sílabas. Este juego pretende lograr una
asociación entre el sonido del fonema y la consonante, utilizando como método de
refuerzo la imagen del animal. De esa forma, el niño puede asociar (por ejemplo) el
sonido “se”rpiente con el animal correspondiente, e identificar que la consonante “s”
con la vocal “e” corresponden a la primera sílaba del animal que indican.

Una vez concebido el juego en cuestión, se diseñaron dos versiones del mismo, la
primera permitía al niño utilizar la Kinect levantando uno de los dos brazos (derecho o
izquierdo) para señalar al animal que considerasen que correspondía con el texto que
se les mostraba. La segunda implementación permitía al niño tocar la pizarra digital
para “señalar” al animal.

El primero de los diseños (el basado en Kinect) pretende no sólo mejorar la
jugabilidad, sino también enseñar otros conceptos como “izquierda” o “derecha” al
niño, o incluso probar la psicomotricidad de los pequeños. El segundo trata de hacer
intuitivo la interacción entre el juego propuesto y la pizarra digital, el niño únicamente
tiene que “pulsar” sobre la imagen que cree que es la correcta.

91

En las pruebas realizadas (ver siguiente sección), se utilizó un sensor Kinect y una
pizarra digital en el aula de los niños. Ellos actuaban en forma de “conferencia”, es
decir, sentados alrededor de la pizarra mientras el profesor o uno de los niños,
seleccionaba al siguiente en el turno del juego.

3.4 Mejoras de la aplicación

Con la solución utilizada en la aplicación resolvemos el problema que teníamos en un
principio, ahora la temática del juego es configurable. Con lo que ahora mismo pode-
mos hacer varias versiones del videojuego manteniendo la misma filosofía. Es decir,
en nuestro caso los niños aprenden los nombres de los animales del bosque, peros sólo
cambiando las imágenes y el fondo conseguiríamos por ejemplo que los usuarios
aprendieran las partes del cuerpo.

Aun así encontramos los siguientes inconvenientes que se deben solucionar en futuras
mejoras:

(a) No es amigable para el docente cambiar el contenido del paquete educativo.
Necesita renombrar todas las imágenes y redimensionarlas al tamaño adecua-
do.

(b) Como utilizamos el nombre de la imagen para hacer las etiquetas tenemos el
inconveniente que no acepta caracteres especiales como guiones, la barra, los
acentos, la ‘ñ’, etc.

Para solucionar el problema (a) se debería crear una interfaz en la cual el profesor
pueda insertar la imágenes y la propia aplicación redimensiona las imágenes de forma
correcta para evitar pérdida de calidad. Para el problema (b), una posible solución es
que a la vez que el usuario seleccionar la imagen del juego inserte la etiquita con la
cual se emparejará en el juego. De esta forma podemos insertar caracteres espaciales.

4 Evaluación y pruebas realizadas

Los juegos descritos en la sección 2 fueron instalados y mostrados a varios educadores
del centro de educación infantil y primaria C.E.I.P Manuél Vázquez Montalbán
(www.educa.madrid.org/web/cp.manuelvazquezmontalban.leganes/) de Leganés en
Madrid.

Como se ha mencionado en la sección anterior, varios de los mismos fueron
descartados, y el juego de “animales” fue finalmente seleccionado para realizar
diversas pruebas con dos clases de infantil. La primera, en una clase de primero de
infantil, 26 niños comprendidos entre 3 y 4 años, uno de ellos con necesidades
especiales.

Este mismo juego fue modificado adaptándolo para una clase de segundo curso de
educación infantil (23 niños de 4 a 5 años). En este caso se sustituyeron las imágenes
por partes del cuerpo (huesos, cerebro, órganos, etc…), elementos que estaban siendo

92

desarrollados por la educadora. La adaptación del juego consistió únicamente en la
sustitución de las correspondientes imágenes y etiquetas del texto (reutilizando el
diseño de clases mostrados en la sección 3).

Uno de los primeros problemas que encontramos en la realización de las pruebas, fue
la dificultad de la utilización del sensor Kinect©. El espacio de las aulas en general
era reducido teniendo en cuenta el número de niños considerados, este hecho hace que
se identificase más de un jugador, en particular si los mismos son inquietos o tienen
dificultad para estar un largo tiempo parado. Este hecho hizo que la jugabilidad con
el sensor fuese baja, al no poder capturar con facilidad el movimiento del jugador y
de los “espectadores”.

Por otro lado, los niños de tan corta edad todavía no tienen suficiente madurez para
utilizar el sensor Kinect. No asocian el movimiento del cursor del juego con el de la
mano. Les resulta más fácil e intuitivo utilizar la pizarra digital ya que sólo deben
pulsar los objetos de la pantalla para interactuar con el juego.

Por lo tanto, de las cuatro pruebas realizadas (dos en cada grupo considerado),
únicamente en una se utilizó la Kinect descartándola finalmente por poco usable en el
entorno considerado. La utilización de la pizarra digital fue en todos los casos la más
positiva al permitir una forma más simple de juego. En varios de los estudios
realizados se pudo observar un comportamiento colaborativo entre los niños, algunos
de ellos ayudaban a otros a identificar el animal correcto explicándoles porqué la
consonante y la vocal que le seguía no podía corresponder al fonema del animal que
señalaban.

5 Conclusiones y trabajo futuro

Después de las pruebas y reuniones con los educadores se realizó una serie de
entrevistas con los mismos de las que se extraen dos conclusiones principales. Por una
parte, los juegos inicialmente considerados y diseñados no se adecuan al temario que
están impartiendo en el centro. Este hecho es particularmente significativo, dado que
según la experiencia de estos educadores, es un hecho muy frecuente que la mayoría
de paquetes de juegos educativos disponibles no tienen en cuenta.

Los paquetes educacionales basados en gaming son habitualmente de carácter general.
Es decir, se diseñan sobre conceptos o metodologías docentes genéricas pero que rara
vez se adaptan, o pueden adaptarse a una metodología propia, por ejemplo la
utilización de fonemas para la enseñanza de la lecto-escritura.

Por otra parte, se consideró que a los niños les resultaría más fácil interactuar con el
sensor Kinect, no mediante el control de un “puntero” y sus manos, sino mediante la
utilización de gestos o posturas (por ejemplo, mediante el reconocimiento de la mano
derecha o izquierda). Bajo esta suposición se modificó el juego de los animales para
tratar de adaptarlo a un reconocimiento postural del niño. Sin embargo, el entorno
altamente “ruidoso” (gran cantidad de niños pequeños en un espacio reducido) sigue

93

haciendo extremadamente difícil la utilización de la Kinect©. Debido a ello, la
interacción con la pizarra digital es sin duda la mejor elección en el aula.

El estudio de la adaptabilidad de estos juegos mediante interfaces simples que
permitiesen cambiar al docente el “aspecto” del juego es un trabajo todavía que debe
ser desarrollo. En un futuro, se pretende cambiar el proceso manual que se utiliza
actualmente para adaptar el contenido del juego a un proceso más automático y
amigable para los profesores. Sería necesario crear una interfaz donde el docente
pueda insertar la imagen y en asociarle un nombre, ya que utilizar el nombre de la
imagen tiene sus propias limitaciones como hemos comentado anteriormente, en el
apartado 3.2. Además tenemos que valorar el uso de una nueva librería gráfica, ya que
la librería XNA dejará de tener soporte este año, una posible opción sería la librería
DirectX o la librería SDL, ambos son soportadas en C#. Finalmente, debemos
explorar nuevos juegos simples que pudiesen ser utilizados en otros centros.

6 Agradecimientos

Quisiéramos agradecer al colegio Manuel Vázquez Montalbán de Leganés, por permi-
tirnos probar los juegos infantiles en la clase de infantil y muy en particular a las pro-
fesoras Cristina Morejón y Paola Weil, por su ayuda en la evaluación de los juegos y
por sus consejos que han ayudado a definir el diseño final de los juegos. Por último, y
muy especialmente, a todos los “peques” de las clases de primero y segundo de infan-
til del colegio Manuel Vázquez Montalbán de Leganés que participaron en las prue-
bas.

El desarrollo del trabajo aquí presentado ha sido financiado por el proyecto de inves-
tigación ABANT (TIN2010-19872).

Referencias

1. Brunner, Simon. Lalanne, Denis. Schwaller, Matthias.: Using Microsfot Kinect Sensor To
Perform Commands on Virtual Objects, Master (Informática) Hong Kong, Université de
Neuchâtel, Universitas Friburgensis, Unuversität Bern 2012. 101 h.

2. http://minecraftedu.com/
3. http://www.kinecteducation.com/
4. http://futurelab.org.uk/
5. http://www.educationarcade.org/
6. López Chamorro, Irene.: El juego en la educación infantil y primaria. Revista de la Edu-

cación en Extremadura. (98):, 2010.
7. Alfonso García Velázquez, Alfonso García, Josué Llull. Peñalba. Juegos, juguetes, roles

sociales y medios de comunicación En su: El Juego Infantil y su Metodología. Madrid.
Editex, 2009. pp. 130 - 195 (2010)

8. Cemades Ramírez, Inmaculada.: Desarrollo de la creatividad en Educación Infantil Pers-
pectiva constructivista. Revista creatividad y Sociedad (12):, septiembre 2008

94

9. Catuhe, David.: Programming with the Kinect for Windows Software Development Kit.
Devon Musgrave (2012)

10. Webb, Jarret. Ashley, Jame.: Beginning Kinect Programming with the Microsoft Kinect
SDK. Jonathan Gennick. (2012)

11. Freitas, S. (2006) Learning in immersive worlds. A review of game-based learning. Dispo-
nilbe en:
http://www.jisc.ac.uk/media/documents/programmes/elearninginnovation/gamingreport_v
3.pdf

12. Freitas, S., Savill-Smith, C. and Attewell, J. (2006) Educational games and simulations:
Case Studies from Adult Learning Practice. London: Learning and Skills Research Centre.

95

Implementation of a videogame: Legends of
Girona

A. Rodŕıguez1, R. J. Garćıa1, J. M. Garćıa1, M. Magdics12, and M. Sbert1

1 Universitat de Girona, Girona, Spain,
2 Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, Hungary

Abstract. Legends of Girona is a serious game which can be used to
teach local history to students in the province of Girona in Spain. The
game is a graphic adventure taking place in both present-day and me-
dieval Girona. We describe in this paper the design of the game, includ-
ing aspects related to artificial intelligence, advanced computer graphics,
immersive displays, exergaming and mobile platforms. We also present
some directions of future work.

Keywords: serious game, history, immersive devices

1 Introduction

We present here Legends of Girona: a serious game aimed at learning the local
legends of the city of Girona in Spain. The game can be used by high school
students to ease retention of important happenings and dates of local history.
The game is a graphics adventure which aims at providing players an immersive
environment in the relevant period.

The game is a result of a collaboration between our Computer Graphics
group and the TIC Education group. The storyline and plot was designed by
the Education group to maximize the learning experience while maintaining the
enjoyability of the game, while the Computer Graphics side used the storyline
to design and implement the game.

The next section provides a historical background of the events described in
the game, while section 2 describes the game architecture. The state diagram
of the game can be seen in section 2.1; then section 2.2 describes the Artificial
Intelligence algorithms programmed. Section 2.3 and 2.4 provide a description
of photorealistic and non-photorealistic algorithms used in the game. Then sec-
tion 2.5 describes the use of Microsoft Kinect to control the game. Section 2.6
describes the use of immersive display devices, and section 3 shows the adapta-
tion of the game to run on iPhone and iPad devices. Finally, section 4 concludes
the paper.

1.1 Historical Background

The game starts in present day Girona to provide a familiar setting to users,
and to increase believability and identification with the main game character.

96

After spending some time familiarizing themselves with the city (or recognizing
familiar streets in the case of players living in Girona), time travel is used to
lead the player to the desired date (in our case, the siege of Girona during 1285).
A similar technique has been used in the Assassin’s Creed series of games [8].

We have modeled a realistic walkthrough from the Stone Bridge in Girona to
the St Feliu Church along the Rambla and the Ballesteries streets. This provides
a view of two landmark medieval structures, and their situation as extremes of
a modern-day touristic, cultural and commercial street.

After the walkthrough, the player is transferred to Girona in the year 1285,
during the siege of the city. The siege of Girona in 1285 was part of the Arago-
nese Crusade (1284-1285), in which the pope declared the crusade against the
Aragonese king who had just conquered Sicily (a territory under papal control
then). The French armies attacked the Roussillon, and besieged Girona in 1285,
which was taken. A further battle saw the French defeat, with further loses due
to a dysentery epidemic. The crusade ended in 1291 with the lift of the church
ban on the Aragonese king.

With these historical facts as a basis, the Girona legend of the flies of St
Narcis took the following form: The legend states that when the French invaders
opened the St Narcis sepulcher searching for loot, a large quantity of flies exited
the sepulcher instead, covering the whole city and bringing illnesses to the French
soldiers, which had to retreat in haste.

1.2 Game description

The game starts in Girona’s boulevard, near the tourist’s office. In the office, the
player is given some initial comments; then he is free to walk along the boulevard.
On the other side of the boulevard is the St Feliu church, where the player is
given a puzzle to solve. After solving the puzzle, the player is transferred to 1285.

The player is now outside the city and notices the siege. He must flee from
the soldiers. After getting help from some citizens, he manages to enter the city.
During the process, he notices that the inhabitants of Girona consider him a
hero which will save the city.

Inside the walls, the player should collect some flies under the guidance of
a sorceress, and search for the entrance of a labyrinth leading to St Narcis’
sepulcher. The flies are to be put inside the sepulcher, so that when the soldiers
open it later, the flies attack them. After the soldiers are defeated, the player is
transferred back to the present.

2 Game Architecture

The game was implemented using Unity [9], which is a multiplatform game
engine running on Microsoft Windows and Apple OSX which can create games
for the Web, PC, OSX, IOS, Android, Flash, Xbox, PS3, and Wii platforms.
Currently, we are targeting the PC, OSX and IOS platforms for our game.

97

Fig. 1. Game Structure diagram

Figure 1 shows how the game class structure is divided in different blocks.
The decoupling of Input and Output has been highlighted to show how this
architecture can allow the use of non-conventional immersive displays (which
traditionally require higher integration in the game engine) and new input de-
vices with little effort.

The game logic block is composed of the game state and of the actors affected
by the game state. There are two types of actors: friendly and hostile. A friendly
actor helps us advance in the story and interacting with them changes the game
state. Hostile actors produce a penalty when we interact with them. The next
section describes the game states.

2.1 Game levels and State diagram

The game is structured in six levels:

1 Current-day Girona
2 The St. Feliu Church
3 Outside of the city walls during the 1285 Siege
4 The city wall gate puzzle
5 Inside of the city walls
6 The labyrinth

Screenshots of the different levels can be seen in figure 2. A description of the
state diagram shown in figure 3 follows.

Current-day Girona Current-day Girona is divided in two states: the initial
state, in which movement is limited to a five meter radius of the original position,
and which only allows interaction with the tourist office.

After interaction, the second state allows the user to move along the streets
leading to the St Feliu Church. Entering the church loads the second level.

The St. Feliu Church This level has four states.

1 In the initial state we may either find a key or a door.
2 The key produces a change in state prompting the user to search for the

door.

98

Fig. 2. Levels of the Legends of Girona game

3 Seeing the door without the key will prompt the user to search for the key.
4 After the key has been found in state 3, the user is prompted to return to

the door.

In states 2 and 4, the door may be activated to load the third level.

Outside of the city walls during the 1285 Siege This level is the most com-
plex one, with eight states which include an optional intermediate sub-mission.

1 In the initial state we see how the protagonist wonders where he is and
concludes that he needs to search for help. After the initial monologue is
ended, there is an automatic transition to the next state

2 We are outside of the city of Girona surrounded by guards to avoid and
with the objective of finding help. The player is shown in a first-person
perspective. To change state, we must find the Merchant and ask for help,
after which state 3 is achieved.

3 In this state we wear medieval clothes to be less conspicuous and a pendant
marking us as the chosen one. A third person perspective is used to ease
navigation in the city outskirts. The objective is to talk to a lame man in
the city while avoiding the guards. Once we talk to the man state we reach
state four.

99

Fig. 3. State diagram of the Legends of Girona game

4 When entering state 4 we see night fall on Girona and the lame man has told
us how to enter inside the city walls. From this moment we may go to the
city gates and that will induce the load of the next level. If we want the walk
to the gates to be easier, a sub-mission may be done so that the lame man
helps us distract the guards. The sub-mission consists in getting 500 coins
for the lame man. To change the state, we can go and talk to the Merchant,
which triggers state 5.

5 In this state we have a package given to us by the Merchant. We may take
the package to the blacksmiths house so that the Merchant gives us the coins
we need. After delivering the coins, state 6 is entered.

6 In this state we need to tell the Merchant that the package has been delivered.
Once we do, we receive the 500 coins and enter state 7.

7 In this state we have the coins and giving them to the lame man ends the
sub-mission, leading to state 8.

8 The lame man distracts most of the French guards which were patrolling
outside of the city wall. We only need to go to the city gates to change to
the next level.

The city wall gate puzzle This level has two states, the initial one until
the year of the siege is provided by the user, and a final state to provide the
transition to the next level.

Inside of the city walls This state has seven states, but without optional
sub-missions.

1 We start in the inside of the city walls and must investigate to know what
to do. After talking to a boy near the gates, state 2 is reached.

2 In this state, our purpose is clearer. We need to search for a sorceress and
request her help. After crossing the city to find her and talking to her, state
3 is triggered.

3 Now we need to use a basket (given to us by the sorceress) to collect a series
of flies which are located all around the city. The higher the difficulty level,

100

Fig. 4. Pathfinding and detection zones for soldiers

the more flies we need to find and the less time we have to complete the
task. If the task is complete, state five is triggered; otherwise state four will
occur.

4 Time is over, and the flies have escaped the basket, breaking it. We need to
talk to the sorceress again to get another basket, after which we reach state
3 again.

5 The basket is full of flies, so we need to go back to the sorceress’ place. After
talking to her, she gives us a hint and state six is reached.

6 We now need to talk to a Jew to get the labyrinth’s key. After talking to
him the transition to the 7th state is triggered.

7 We have the flies, the hint and the key, so when we reach the labyrinth door
the next level is loaded.

The labyrinth This level also has two states, the initial one and a final one
with the end of labyrinth animation, which leads to the end of the game.

2.2 Artificial Intelligence

The control of the behavior of the non-player characters is based on artificial
intelligence rules to predict and anticipate the player [6]. This is the most relevant
aspect in the city guard characters, which follow the player through medieval
Girona.

Three aspects need to be taken into account:

– Pathfinding algorithms to patrol and move All soldiers and some
scripts which will be applied in the future to simulate the population of both
current-day and medieval Girona use the standard pathfinding integrated in
the Unity 3 engine to calculate the path to their destination. The colliders
of the objects and the terrain of the scene are used to create a walkability
map; this map can be used to calculate a path to any point, as long as the
point is contained in the map. Furthermore, it includes a waypoint system
so that soldiers patrol in the zones delimited by them. Soldiers will decide
which waypoint to visit next using a probabilistic function. To simulate more
characters, waypoints which are not visible for the player, and which allow
NPC to appear and disappear also exist. Figure 4 provides an overview.

101

– Detection algorithm All soldiers have a detection algorithm to find objec-
tives in a circular detection zone. Additionally, a vision zone exists, modeled
by a parabola in the (x,z) plane. When an enemy enters the intersection of
both zones, the soldier will prosecute the enemy. The player has two ways
to flee: move farther than a predefined distance of the guard, or moving out
of sight by hiding behind a building. If the guard cannot see the player, he
will go to the last point the player was visible from the guard position and
search around randomly for a few meters. If the player stays out of view, the
guard will find the closest point in its patrol area and return there.

– Prediction and anticipation algorithm This algorithm uses the last
movement vector of the player to calculate the future position of the player,
so that the guard tries to intercept the player at that point. This is especially
effective for soft turns (easily anticipatable) and hard turns, as this reduces
the player speed and allows the guard to close in.

Additionally, all behaviors are affected by the difficulty level, thus:

– Pathfinding algorithms to patrol and move The patrol and persecution
speeds are affected. At high difficulty levels, the guard and the player run at
the same speed, so the user cannot exit the prosecution area and needs to
hide.

– Detection algorithm The detection and prosecution radii are increased in
high difficulty levels and decreased in low difficulty levels. The latus rectum
of the vision field parabola (defining the amount of periferic vision) is also
increased or decreased depending on the difficulty level.

– Prediction and anticipation algorithm The prediction distance for the
guard is changed, using optimal levels for high difficulty levels and disabling
the feature for low difficulties.

We have requested users’ impressions on the behavior of the guards, and
the response has been positive. These easy to implement procedures create a
behavior for the guards which the users of the game consider realistic.

2.3 Realistic Graphic Effects

The realism in a video game contributes to game immersion and enjoyability.
We are using the GameTools routines [2] to produce realistic materials such as
metals, including pseudo-raytracing reflections, in realtime and with low com-
putational cost.

The routines work by creating and updating distance and color cube maps
centered at the objects with the GameTools materials, and using a GPU shader
to evaluate the correct pixel color using a binary search on the distance cube
map followed by a texture access to the color cube map. The use of this tech-
nique provides realistic images even when the maps are only updated rarely,
providing highly realistic images with low computational cost. The slight de-
crease in fps does not affect gameplay. These routines can be integrated easily in
already existing games using drag-and-drop of templates to create the necessary
environment maps. The resulting effects can be seen in figure 5.

102

Fig. 5. Realistic reflections using GameTools effects

2.4 Stylized Rendering

In certain cases such as historical storytelling, artistic stylization may provide
greater experience and a more memorable atmosphere then realistic depiction.
We adapted a collection of screen-space Non-Photorealistic Rendering (NPR)
techniques to Unity, enabling game designers to easily change the rendering
style of the game. We designed our effects based on popular techniques from
visual arts, especially comics. A common characteristics of comics is simplified
depiction with large flat surfaces and minimal texture details, while enhancing
important information such as character contours. In order imitate this style, we
implemented texture simplification methods and luminance quantization based
on [11, 3] to remove unwanted details, and the artistic edge detection of Win-
nemöller et al. [10] to enhance important ones. Changing the color of rendered
shadows can create a variety of effects, such as impressionism or chiaroscuro [7].
Shadowed pixels are determined by rendering the image once with and once with-
out shadows and comparing the two results as a post processing, shadow color is
changed using the obtained mask. To enhance the illusion of depth, we provide
depth varying detail level of textures, edge thickness and color saturation, each
technique commonly used by painters and comic drawers. The atmosphere of
the rendered images can be changed by adapting the color palette to a given
example image, as in Reinhard et al. [5]. Most of the effects can be used with
no measurable effect on speed. At Full HD resolutions, the Abstraction effect
can reduce fps around 25 %, while shadow effects are the most expensive, at
33 % reduction in frame rate. All our effects are applied to a camera object as
a post-processing filter [4], permitting them to be used in any games. Figure 6
illustrates several styles created by our implementation.

2.5 Kinect

In addition to realistic graphics and game physics, functional realism can greatly
enhance immersion in the virtual world. Natural User Interfaces (NUIs) allow
users to perform different actions in the game as they would do so in the real
world. We have integrated the Microsoft Kinect into our game, and implemented
a Unity package based on the official OpenNI wrapper for Unity along and the

103

Fig. 6. Stylized renderings of Legends of Girona (left to right): black and white, depth-
based desaturation, color style transfer.

NITE middleware that supports control by user gestures. The package contains
a compact Kinect control object dealing with user selection, skeleton extraction
and gesture tracking and providing a selection of gestures that can be added
to any scene using drag-and-drop. The Kinect control integrates seamlessly into
the system, it works in conjunction with the standard mouse-keyboard input
without any modification of the underlying game logic.

Game control in Legends of Girona consists of navigation (moving, rotating
and jumping), interaction with game objects and help (world map and quest
log). Our implementation is an “exergame” requiring the user to mimic the
real world actions, for example, walking in place toggles the avatars forward
movement, jumping makes the avatar jump and opening the map requires the
arms to be spread (similarly to holding a large map). Figure 7 shows examples
for the different gestures in the game. The performance of the game was not
significantly affected by the use of Kinect.

Fig. 7. Examples of Kinect gestures (left to right): jump, walk, open map.

2.6 Immersive displays

Immersive displays surround the player and provide a better viewing experience.
Figure 8 shows the devices we support. We have developed a unity package which
can integrate easily in existing in games and add the required functionality to
display in immersive displays. The package consists of a cubemap-generating

104

game object and a set of post-processing GPU shaders to generate the final
image (some details on the internal structure of the package can be seen in [1]).
In a 3.1 GHz Intel Core i5 Mac with 8 GB of RAM and an AMD Radeon HD
6970M with 1GB of RAM, the game can be rendered at 200 fps in a flat monitor,
while the Dome and immersapod visualizations render at 66 fps. The reduction
in performance is compensated by the increase in realism, and in any case does
not impede gameplay.

The result of the shader for Dome devices can be seen in figure 9 (left).
The corresponding images for an immersapod device can be seen in figure 9
(right). The deformed images shown here correspond exactly to the inverse of
the transform provided by the camera lens in these devices, so the final image
shown to the user is an undistorted view of the scene with a large field of view.

Fig. 8. Dome (external and internal views) and immersapod.

3 IOS Port

To port the Legends of Girona game to the iPad 2 hardware, some things had
to be modified and adapted to ensure correct performance. In particular, the
polygonal load, the draw calls and the memory load had to be reduced. Addi-
tionally, specific controllers were designed. The game was ported during a period
of three weeks by a single developer.

The polygonal load in the scenes was reduced by simplifying some of the
models in the current-day Girona level. The decorations in the Rambla street
have been remodeled, and the tree models have been simplified. Level three
(outside of the city walls) required similar changes, plus a limitation on the
number of soldiers. Furthermore, night scenes suffered from an excessive number
of lights (the torches). Although Unity will disable non-visible lights, a more
stringent method was developed and programmed to ensure that only the most
nearby torches are active.

To reduce the memory load, in order to allow execution on the iPad 2, the
resolution of all game textures was lowered, and the game audio was changed
to use streaming from disk, alleviating the memory pressure. The current-day
Girona level required more drastic measures: the scene was changed to take
place during the evening, in order to justify a decrease in visibility. The far

105

Fig. 9. Output of the shader for visualization on a dome (left) and immersapod (right)

plane of the camera was reduced to a quarter of the original distance, and black
fog was added to hide the transition. The number of loaded textures was thus
sufficiently reduced to fit the whole scene in memory. However, during scene
transitions both scenes are loaded, so in order to avoid this (which would put
the memory use above the permitted limits) a new, empty scene was added to
enable the unloading of all the resources from the previous level before loading
the next one.

To adapt the controls, the solution chosen was to add two simulated analog
controls, one on the bottom right corner and another one in the bottom left
corner of the touch screen. The right one controls the movement of the player
while the left one controls camera rotation. To ease gameplay, the actions to
take and activate objects, and to talk with other characters, are now performed
automatically when the player comes in close vicinity to them. The gameplay
has also been changed to use a first-person perspective in all scenes. The game
performance is 25-30 fps, so playability is conserved.

4 Conclusions and future work

We have shown the detailed architecture and design of the Legends of Girona
game. The main purpose of this serious game is teaching the history and leg-
ends of the city of Girona to high school students, while providing an enjoyable

106

experience. We have shown how advanced graphic effects and new interaction
devices can be included in a straight manner into the game, and how to port the
game to mobile architectures.

Our future work will focus in two different aspects: a) creating new con-
tent to show other historical periods and legends, and b) extend and abstract
our libraries so that more graphic techniques (both photorealistic and non-
photorealistic effects) and other interaction devices and techniques can be in-
tegrated seamlessly into games.

5 Acknowledgements

This work has been supported by the research projects coded TIN2010-21089-
C03-01, IPT-2011-1516-370000 and IPT-2011-0885-430000 (Spanish Commission
for Science and Technology), and by grant 2009SGR643 (Catalan Government).

References

1. Garćıa, R., Magdics, M., Rodŕıguez, A., Sbert, M.: Modifying a game interface
to take advantage of advanced I/O devices: a case study. In: Proceedings of the
2013 International Conference on Information Science and Technology Application
(2013)

2. Garćıa, R.J., Gumbau, J., Szirmay-Kalos, L., Sbert, M.: Updated gametools: Li-
braries for easier advanced graphics in serious gaming. In: Asian-European Work-
shop on Serious Game and Simulation, 25th Annual Conference on Computer Ani-
mation and Social Agents (CASA 2012). Nanyang Technological University (2012)

3. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering.
In: Proc. EG UK Theory and Practice of Computer Graphics. pp. 51–58 (2008)

4. Magdics, M., Sauvaget, C., Garcia, R., Sbert, M.: Post-processing NPR effects for
video games: a case study. Poster at Expressive 2013 Conference (2013)

5. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images.
IEEE Comput. Graph. Appl. 21(5), 34–41 (Sep 2001)

6. Rich, E., Knight, K.: Artificial intelligence (2. ed.). McGraw-Hill (1991)
7. Sauvaget, C., Boyer, V.: Stylization of lighting effects for images. In: Signal-Image

Technology and Internet-Based Systems (SITIS), 2010 Sixth International Confer-
ence on. pp. 43–50 (2010)

8. Assassin’s Creed 4 Black Flag — Official GB Site — Ubisoft. ”http://
assassinscreed.ubi.com/ac3/en-GB/index.aspx” (2013), accessed 13 May 2013

9. Unity Technologies: Unity - Game Engine. ”http://www.unity3d.com/” (2013),
accessed 18 February 2013

10. Winnemöller, H.: XDoG: advanced image stylization with eXtended Difference-of-
Gaussians. In: Collomosse, J.P., Asente, P., Spencer, S.N. (eds.) NPAR. pp. 147–
156. ACM (2011), http://dblp.uni-trier.de/db/conf/npar/npar2011.html

11. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans.
Graph. 25(3), 1221–1226 (Jul 2006)

107

Drum-hitting gesture recognition and prediction
system using Kinect

Alejandro Rosa-Pujazón, Isabel Barbancho, Lorenzo J. Tardón, and Ana M.
Barbancho

Dpt. Ingenieŕıa de Comunicaciones, E.T.S.I. Telecomunicación,
Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain

alejandror@uma.es,ibp@ic.uma.es,lorenzo@ic.uma.es,abp@ic.uma.es

http://www.atic.uma.es/

Abstract. This paper presents a gesture-based interaction technique
for the implementation of a virtual drum using a 3D camera-based sen-
sor. In particular, a human-computer interface has been developed to
recognize drum-hitting gestures using a Microsoft Kinect device. The
system’s main purpose was to analyze and minimize the effects of the
delay between user’s input commands and the execution of the com-
mand by the system. Two implementations are discussed: one based on
Machine Learning techniques for gesture recognition, and the other one
based on a signal processing approach, using a Wiener lineal predictor.
Both implementations showed to be able to predict user movements to
compensate for the lag introduced by the sensor device.

Keywords: Music Interaction, Gesture Detection, Human-Computer
Interaction, Machine Learning

1 Introduction

Music interaction interfaces are usually confined to the use of the traditional
musical instruments. Yet, in general terms, the mechanics and abstract concepts
of music are not usually known to most lay people. Furthermore, in order to learn
or understand the different aspects of music theory it is necessary to devote a
considerable amount of time to such purpose. However, the evolution of sensing
and motion-tracking technologies has allowed for the development of new and
innovative human-computer interfaces that have changed the way in which users
interact with computer applications, thus offering a more ’natural’ experience
than the one had with a more conventional setting, which can also help to lower
the barriers of the inherent abstract nature of musical concepts.

Advanced human-computer interfaces to implement a more natural or im-
mersive interaction with music have been proposed and/or studied in previous
works [3] for a wide array of applications: gaming [8][27], new instruments cre-
ation/simulation [12], medical rehabilitation [6], modification of visual patterns
by using sung or speech voice [15], body motion to sound mapping [1][5][9][14],

108

orchestra conductor simulation [18][21][25], tangible and haptic instrument sim-
ulation [2][10], drum-hitting simulation[11][19][26][20], etc.

Some of the problems most commonly identified with advanced human-
computer interfaces is that they are usually expensive, intrusive and/or bulky,
being prone to raise ergonomic issues. Fortunately, the emergence of devices
like the Wiimote and Kinect have helped to mitigate such issues. Off-the-shelf
devices have also been studied for the creation of new interaction models for
music performance, such as the previously mentioned Wiimote [22] and Kinect
[17][25][20][29][24] devices, and even regular mobile phones and smartphones [7].

In this paper, we aim to present an advanced human-computer interface for
drum-hitting gesture recognition based on a Kinect sensor. As previously indi-
cated, the Kinect sensor is mostly inexpensive and does not hinder user move-
ments in any way, thus being completely non-intrusive. However, prior works
[3][20][16] have shown that the camera sensor introduces a meaningful lag that,
along with whatever delay is introduced by the application itself, may be notice-
able enough to diminish the quality of the overall experience; concretely, while
the Kinect sensor works at a nominal rate of 30 frames per second, the latency
can reach values in the order of roughly 0.1-0.3 seconds [16]. Therefore, we pro-
pose in this paper a system that improves upon the approach followed in [3]
and takes into consideration such delay and tries to compensate its effect by
predicting/anticipating user’s drum-hitting gestures.

2 Methods and Materials

Due to its lack of intrusiveness and its relatively low-cost, off-the-shelf nature, we
opted for a Microsoft Kinect for XBOX device in our human-computer interface
design. Since the Kinect 3D sensor actually provides coordinates for each posi-
tion joint within its field of view, it could be possible to define the position and
dimensions of a virtual drum within that space. A first iteration of a virtual drum
simulator using this device was implemented, defining an area of the physical
space around the user that was associated to the virtual drum volume. Addi-
tionally, the application rendered a virtual environment using C/C++, OpenGL
graphics library [23], and the OGRE graphics engine [13], so that the user had
a visual reference in order to ”hit” the virtual drum (see Fig. 1). The sounds
were read from wav files, using the OpenAL audio library. The human-computer
interaction interface was implemented with the OpenNI library and the NITE
plugin, using full-body skeleton tracking to track the motion of both hands at the
same time. The skeleton node corresponding to the head was used as a reference
to place the virtual objects in the environment (i.e. the virtual drum).

2.1 Volume-based virtual drum

As previously indicated, an initial implementation of the virtual drum was per-
formed by detecting the position of the user hands relative to a space volume
corresponding to the virtual drum, i.e. a sound will be played whenever the user

109

’hits’ the volume defined. We want the system to be usable without tools of
any kind, so that the user can play with his/her hands alone. Thus, instead of
tracking sticks, mallets or tools of any kind, the drum is played with hands alone
(sort of like a tan-tan). Such implementation also helps to address the fact that
the technology used cannot accurately detect moves that are too short (i.e. just
a short flick of the wrist). Following a tan-tan interaction metaphor, users are
more likely to perform large enough gestures than using sticks or similar tools.

Fig. 1. Virtual Environment

The purpose of this application was to serve as a pilot study to observe
potential key features in the drum-hitting gestures performed by users, as well
as testing the impact of the delay in the human-computer interface on the overall
experience of the users. The lag introduced was measured by recording the user
performances, using a EOS 5D Mark II camera. By combining the analysis of
the recordings performed and the actual times when the drum-hitting event was
triggered, it was found that the overall lag in our application was approximately
of 220 ms (the application ran at approximately 20-25 fps, so the lag was roughly
5 rendering frames, fig. 2). Thus, the lag introduced by the system is high enough
to have an important impact in the overall experience. Specially, the lag induced
becomes particularly relevant in the case of swift movements, as is the case of a
drum-hitting gesture (see fig. 2).

110

0 10 20 30 40 50 60

Frames (1 frame = 50 milliseconds)

Hand position: real and tracked (delayed) data

0 10 20 30 40 50 60

Frames (1 frame = 50 milliseconds)

Difference between real and tracked data

real data
tracked data

Fig. 2. Real data and tracked data: effects of the delay

2.2 Gesture recognition based on feature analysis

As found in the pilot study, the delay between user gesticulation and the actual
response of the system in our application took too long for an adequate feeling of
drum-hitting, hindering the purpose of the system as a virtual drum simulator.
In this subsection and in the next one, two different ways to address this prob-
lematic are presented. Instead of trying to define some volumetric space around
the user to ”place” the virtual drum, we resort now to a more gesture-driven
approach to implement the drum-hitting events. Therefore, whenever a drum-
hitting gesture is detected, the system will respond by playing the corresponding
sound.

In order to properly detect a given gesture, an analysis to find the most ad-
equate features was performed. From this analysis, we identified that the most
deciding features of a drum hitting gesture would be the velocity and accel-
eration over the vertical axis; indeed, it stands to reason to expect peaks of
speed/acceleration whenever the user intends to hit the drum and, at the same
time, downward movement that is not a positive gesture would be performed at
lower speed and acceleration levels. In order to account for the fact that different
users will have different sizes and that the magnitude of both the acceleration
and the velocity will depend on the size of the user’s tracked skeleton (dependant
also of the position of the user along the Z axis), the data was normalized by a
factor calculated as indicated by the following equations, using the coordinates
of user’s head and torso as a reference.

NormV el =
V el

HeadPos − TorsoPos
(1)

NormAcc =
Acc

HeadPos − TorsoPos
(2)

For the detection of the gestures performed, we applied Machine Learning
techniques to classify whether the user has performed a gesture or not. In par-
ticular, a logistic regression model [4] was trained to perform such detection.

111

The logistic regression model is characterized by a set of weights for each of the
features considered (Θi) and a regularization parameter λ, in order to minimize
the cost function J(Θ), as per the following equations (xi are the values for each
of the features considered, and y is the resulting classification value):

z = e−(Θ0+
∑

Θixi) (3)

HΘ =
1

1 + z
(4)

ifHΘ >= 0.5, then y = 1 (5)

ifHΘ < 0.5, then y = 0 (6)

J(Θ) =
∑

(HΘ − y)2 + λ
∑

Θ2
i (7)

Training data was collected with the help of 10 participants, who were in-
structed to perform both positive gestures (actual drum-hitting gestures) and
negative gestures (tracked motion that was not intended as a drum-hitting ges-
ture). All the gestures performed were done with slight variations, to account for
the variability that these gestures might had in a real scenario. Position, velocity
and acceleration of hand movements were tracked and normalized as per equa-
tions 1 and 2 to minimize the effects of size. Once collected, the data was further
processed to extract only the data corresponding to downward movements, and
to eliminate the effects of noisy samples because of imperfections in the measures,
the data tracked was further pruned by selecting only those gestures performed
at a speed of at least 0.1 normalized units per second. The gestures were then
identified by looking for the start and end of downward movements (negative
velocity). An example of such refined data can be found in figure 3

For each gesture, the peak (maximum) values of downward velocity and
downward acceleration were extracted as features for the logistic regression clas-
sifier. Thus, the classifying criteria followed the equations below.

z = e−(Θ0+PeakV el∗Θ1+PeakAcc∗Θ2) (8)

HΘ =
1

1 + z
(9)

ifHΘ >= 0.5, then y = 1 (10)

ifHΘ < 0.5, then y = 0 (11)

The value of the variable y will be 1 whenever a gesture is correctly classified
as a positive gesture (drum-hitting gesture) and 0 otherwise (negative gesture).

The classifier was trained with a total of 440 gestures (273 positive and 167
negative) identified from the data collected. In addition to the training data, a
set of cross-validation data was used to regularize the logistic regression, with a
total of 144 samples (73 positive and 71 negative). Both features (peak velocity
and peak acceleration) were scaled accordingly (by calculating the mean and
variance of the training set). The resulting data for the Θ parameters of the
model and the regularization parameter λ are summarized in table 2.2. The
success rate with the cross-validation data was of 93.06 %.

112

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Frames (1 frame = 50 milliseconds)

no
rm

al
iz

ed
 u

ni
ts

Normalized Position

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Frames (1 frame = 50 milliseconds)

no
rm

al
iz

ed
 u

ni
ts

 p
er

 s
ec

on
d

Normalized Velocity

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Frames (1 frame = 50 milliseconds)

no
rm

al
iz

ed
 u

ni
ts

 p
er

 s
ec

on
d2

Normalized Acceleration

Fig. 3. Samples of extracted normalized data

Θ0 Θ1 Θ2 λ

0.9221 -1.7931 -0.6101 10

Table 1. Parameters of the logistic regression model for the first system

113

2.3 Forecasting based on a Wiener linear predictor

As previously indicated, it was found that the delay between user interaction and
the generation of sounds was as high as 5 rendering frames. Since the application
obtains one motion sample for each hand per rendering frame, that means that
the system is tracking motion with a delay of 5 samples. In order to address this
problem, it is necessary to predict the instant when the user performs a drum-
hitting gesture. This situation was addressed by using a different, alternative
implementation of our gesture recognition system. In this case, we integrated a
linear predictor based on Wiener filtering [28] to forecast the position of future
samples according to the previously tracked motion data. Wiener filters are based
on the least minimum mean square error (LMMSE) estimator; in particular, the
mathematical model for the N th-order Wiener linear filter to predict the l -th
future sample of a signal x[n] follows the equation:

Rxx[0] Rxx[1] . . . Rxx[N − 1]
Rxx[1] Rxx[0] . . . Rxx[N − 2]

...
...

...
Rxx[N − 1] Rxx[N − 2] . . . Rxx[0]

h[1]
h[2]
...

h[N]

 =

Rxx[l]
Rxx[l + 1]

...
Rxx[l +N − 1]

where Rxx[n] is the autocorrelation of the input signal. In particular, we used
a Wiener filter to predict l=5 samples to cover the delay in our application, and
the order of the filter was set to N=30.

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5 λ

-0.8837 -1.7111 4.0256 4.8970 3.2626 -0.6958 1

Table 2. Parameters of the logistic regression model for the Wiener scheme system

The Wiener filter was applied to our data set to extract estimates of future
predicted positions as a reference for our gesture detector. More specifically,
the data set was processed in a similar fashion to the previously presented sys-
tem, isolating gestures corresponding to downward movements with a downwards
speed of at least 0.1 normalized units per second. In this case, however, the dif-
ferent gestures identified were combined to form a single mathematical signal,
which the Wiener filter was to be applied onto. We used five different Wiener
filters, to predict respectively the l=1,2,...5-th samples, and the 5 predicted sam-
ples were then used as features for a machine learning process regarding once
more a logistic regression classifier [4]. By using these 5 samples as features of
our learning process, the system could predict the future shape (in 5 samples
time) of the signal from the data collected in the last 30 samples corresponding
to downwards movement. This way, we expect the system to be more robust
against false positives.

114

The classifier was trained this time with a total of 666 gestures (259 positive
and 407 negative) identified from the data collected. In addition to the training
data, a set of cross-validation data was used to regularize the logistic regression,
with a total of 186 samples (66 positive and 120 negative). The five features con-
sidered (predicted samples at times l=1,2,..5) were scaled accordingly. The re-
sulting data for the Θ parameters of the model and the regularization parameter
λ are summarized in Table 2.3. Success rate in this case for the cross-validation
data was of 93.01%.

3 Discussion

The work presented here has focused on the implementation of a natural, hands-
free interaction paradigm for musical performance simulating a drumkit. Spe-
cially, the main focus has been on minimizing the lag introduced. Previous works
have focused on using autocorrelation-based predictions to prevent this effect
[26], yet this assumes a certain periodicity in the user performance. In this pa-
per, we propose two machine-learning process which addresses this issue without
such constraints.

The first system is based on analysing acceleration and velocity features to
detect whenever the user intended on ”hitting the drum”. The main advantage
of this system is that it does not require the computer to previously acquire any
kind of data to properly detect user gestures. Instead, whenever a pair of accel-
eration and velocity peaks high enough were detected, a drum-hitting gesture is
recognized, thus triggering the corresponding event to play an appropriate sound
at the correct time, using the prediction scheme described. In other words, when
the user performs a hitting-like gesture such that his/her hands draw a large
arch, the system will most likely recognize the gesture before the user finishes
his/her motion, thus compensating for the lag introduced by the sensing system.
Nevertheless, if the user’s motion draws a shorter arch (like a short motion with
a flick of the wrist), the system might not detect the expected peaks of a hitting
gesture.

The second system is designed more specifically to deal with the issue of the
delay introduced. Thus, by using Wiener filters to implement predictors of up
to 5 samples, it is possible to forecast how the motion will evolve in an interval
of 250 milliseconds, which easily covers the lag found in the application. The
disadvantage of this system is that the gesture recognition depends on previously
recorded positive gestures, so the user will need to perform several gestures for
the system to learn before the performance itself can be started.

Both classifiers were further tested using a set of 100 tests. The results pro-
vided showed a successful recognition rate of 98% for the first system, and 96%
for the Wiener prediction system. From observation, it was found that the sys-
tem failed to recognize gestures when the downward motion was too short, i.e.
when the gesture was little more than a flick of the wrist.

Both schemes were tested by 20 different users, as well as a drummer. Ev-
ery participant was specifically asked to indicate if they had noticed a delay in

115

the system response. They tried first the originally designed virtual environment
with the volume-based detection, then the first system proposed, and then the
one based on Wiener predictors. In the case of the volume-based detection sys-
tem, all the users noticed the lag in the system response (as expected). When
using the first gesture recognition system, 17 participants declared that they no-
ticed no lag in their performance; only the drummer noted that he appreciated
some lag in the performance, but he remarked that he found it mostly mean-
ingless. When testing the system based on the Wiener predictor, again none of
the users found any lag in the performance, yet they all appreciated that the
system was responding better than with the previous gesture detection system.
Specially, the drummer perceived no lag at all in this case. A video showing
the drumkit simulator running the first system implementation can be found at
http://youtu.be/fysJyy0D434

4 Conclusions and Future Works

In this paper, two alternatives have been proposed to implement a drum-hitting
gesture recognition system for real-time performance. The first system addresses
this issue by detecting peaks in the downward velocity and acceleration, while
the second system uses a five-samples-prediction to minimize the effects of the
lag. After testing, both systems have been shown to adequately address the
problem of lag perception, and these results were corroborated by a subjective
evaluation with a limited number of participants. Future works will revolve on
discriminating different gestures to achieve full drumkit functionality, i.e. using
positional information to play different sounds according to the drum or percus-
sion instrument that the user wants to play.

Acknowledgments. This work has been funded by the Ministerio de Economı́a
y Competitividad of the Spanish Government under Project No. TIN2010-21089-
C03-02 and Project No. IPT-2011-0885-430000 and by the Junta de Andalućıa
under Project No. P11-TIC-7154. The work has been done at Universidad de
Málaga. Campus de Excelencia Internacional Andalućıa Tech.

References

1. Antle, A., Droumeva, M., Corness, G.: Playing with the sound maker: do embodied
metaphors help children learn? In: Proceedings of the 7th international conference
on Interaction design and children. pp. 178–185. ACM (2008)

2. Bakker, S., van den Hoven, E., Antle, A.: Moso tangibles: evaluating embodied
learning. In: Proceedings of the fifth international conference on Tangible, embed-
ded, and embodied interaction. pp. 85–92. ACM (2011)

3. Barbancho, I., Rosa-Pujazón, A., Tardón, L.J., Barbancho, A.M.: Human–
computer interaction and music. In: Sound-Perception-Performance, pp. 367–389.
Springer (2013)

116

4. Bishop, C., et al.: Pattern recognition and machine learning, vol. 4. springer New
York (2006)

5. Castellano, G., Bresin, R., Camurri, A., Volpe, G.: Expressive control of music
and visual media by full-body movement. In: Proceedings of the 7th international
conference on New interfaces for musical expression. pp. 390–391. ACM (2007)

6. De Dreu, M., Van der Wilk, A., Poppe, E., Kwakkel, G., Van Wegen, E.: Re-
habilitation, exercise therapy and music in patients with parkinson’s disease: a
meta-analysis of the effects of music-based movement therapy on walking ability,
balance and quality of life. Parkinsonism & Related Disorders 18, S114–S119 (2012)

7. Essl, G., Rohs, M.: Interactivity for mobile music-making. Organised Sound 14(02),
197–207 (2009)

8. Gower, L., McDowall, J.: Interactive music video games and children’s musical
development. British Journal of Music Education 29(01), 91–105 (2012)

9. Halpern, M., Tholander, J., Evjen, M., Davis, S., Ehrlich, A., Schustak, K.,
Baumer, E., Gay, G.: Moboogie: creative expression through whole body musi-
cal interaction. In: Proceedings of the 2011 annual conference on Human factors
in computing systems. pp. 557–560. ACM (2011)

10. Holland, S., Bouwer, A., Dalgelish, M., Hurtig, T.: Feeling the beat where it counts:
fostering multi-limb rhythm skills with the haptic drum kit. In: Proceedings of the
fourth international conference on Tangible, embedded, and embodied interaction.
pp. 21–28. ACM (2010)

11. Höofer, A., Hadjakos, A., Mühlhäuser, M.: Gyroscope-Based Conducting Gesture
Recognition. In: Proceedings of the International Conference on New Interfaces
for Musical Expression. pp. 175–176 (2009), http://www.nime.org/proceedings/
2009/nime2009_175.pdf

12. Jordà, S.: The reactable: tangible and tabletop music performance. In: Proceedings
of the 28th of the international conference extended abstracts on Human factors
in computing systems. pp. 2989–2994. ACM (2010)

13. Junker, G.: Pro OGRE 3D programming. Apress (2006)
14. Khoo, E., Merritt, T., Fei, V., Liu, W., Rahaman, H., Prasad, J., Marsh, T.: Body

music: physical exploration of music theory. In: Proceedings of the 2008 ACM
SIGGRAPH symposium on Video games. pp. 35–42 (2008)

15. Levin, G., Lieberman, Z.: In-situ speech visualization in real-time interactive in-
stallation and performance. In: Non-Photorealistic Animation and Rendering: Pro-
ceedings of the 3 rd international symposium on Non-photorealistic animation and
rendering. vol. 7, pp. 7–14 (2004)

16. Livingston, M.A., Sebastian, J., Ai, Z., Decker, J.W.: Performance measurements
for the microsoft kinect skeleton. In: Virtual Reality Workshops (VR), 2012 IEEE.
pp. 119–120. IEEE (2012)

17. Mandanici, M., Sapir, S.: Disembodied voices: A kinect virtual choir con-
ductor. http://www.smcnetwork.org/system/files/smc2012-174.pdf, last retrieved
20/09/2012 (2012)

18. Morita, H., Hashimoto, S., Ohteru, S.: A computer music system that follows a
human conductor. Computer 24(7), 44–53 (1991)

19. Ng, K.: Music via motion: transdomain mapping of motion and sound for interac-
tive performances. Proceedings of the IEEE 92(4), 645–655 (2004)

20. Odowichuk, G., Trail, S., Driessen, P., Nie, W., Page, W.: Sensor fusion: Towards
a fully expressive 3d music control interface. In: Communications, Computers and
Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on. pp. 836–841.
IEEE (2011)

117

21. Parton, K., Edwards, G.: Features of conductor gesture: Towards a framework
for analysis within interaction. In: The Second International Conference on Music
Communication Science, 3-4 December 2009, Sydney, Australia (2009)

22. Qin, Y.: A study of wii/kinect controller as musical controllers.
http://www.music.mcgill.ca/ ying/McGill/MUMT620/Wii-Kinect.pdf, last
retrieved 20/09/2012

23. Shreiner, D.: OpenGL reference manual: The official reference document to
OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc. (1999)

24. Stierman, C.: KiNotes: Mapping musical scales to gestures in a Kinect-based in-
terface for musican expression. Ph.D. thesis, MSc Thesis University of Amsterdam
(2012)

25. Todoroff, T., Leroy, J., Picard-Limpens, C.: Orchestra: Wireless sensor system for
augmented performances & fusion with kinect. QPSR of the numediart research
program 4(2) (2011)

26. Trail, S., Dean, M., Tavares, T., Odowichuk, G., Driessen, P., Schloss, W., Tzane-
takis, G.: Non-invasive sensing and gesture control for pitched percussion hyper-
instruments using the kinect (2012)

27. Wang, C., Lai, A.: Development of a mobile rhythm learning system based on
digital game-based learning companion. Edutainment Technologies. Educational
Games and Virtual Reality/Augmented Reality Applications pp. 92–100 (2011)

28. Wiener, N.: Extrapolation, interpolation, and smoothing of stationary time series
(1964)

29. Yoo, M.J., Beak, J.W., Lee, I.K.: Creating musical expression using kinect. Proc.
New Interfaces for Musical Expression, Oslo, Norway (2011)

118

A Low-Cost VR System for Immersive FPS Games

José P. Molina
1
, Arturo S. García

2
, Jonatan Martínez

1
, Pascual González

1

1
 Laboratorio de Interacción con el Usuario e Ingeniería del Software (LoUISE)

Instituto de Investigación en Informática de Albacete (I3A)

Universidad de Castilla-La Mancha (UCLM)

Campus Universitario, Avda. España s/n, 02071 Albacete

{ JosePascual.Molina, Jonatan.Martinez, Pascual.Gonzalez }@uclm.es

2
 SymbiaIT, Albacete, Spain

arturo@symbiait.com

Abstract. This paper represents a continuation of our efforts to bring virtual re-

ality to video games, specifically to first-person shooting games. Advocating

for the need to decouple the weapon from the view, in a previous experiment

we demonstrated with a precise -but expensive- optical tracking system that it

was possible to disregard the position of the head and the hand of the user, and

that only their orientations need to be captured. Based on the findings of that

experiment, we now present a prototype that uses inertial technology available

to everyone, two Wiimotes with Motion Plus extensions, with which we intend

to show that it is also possible to transfer the results from laboratory to home at

an affordable price. Preliminary tests with the prototype are satisfactory and

open a promising future for transforming the way in which players are im-

mersed in a FPS game.

Keywords. Video games, first-person shooters, virtual reality, human-computer

interaction.

1 Introduction

The development of the Oculus Rift [1] head mounted display (HMD) has attracted

the interest of players, developers and researchers. This HMD aims to offer profes-

sional HMD features to the videogame consumer, with wide field of view (FOV) and

high resolution, such as those found in research laboratories and leading companies,

but at a much lower price, enough to be attractive to the videogame consumer market.

In addition to the above-mentioned features, this device also includes a head tracker

[2] that provides the user’s head orientation with a faster response time than other

previous devices. With this combination of display and head tracker, the developers

intend that any player can dive into any 3D videogame in first person, especially

first-person shooters (FPS), such as Quake [3], created by John Carmack, who has

also publicly supported of the Oculus Rift project. To this end, it is not necessary for

the game to have specific support for the display or the head tracker. Thus, on the one

119

hand, the display is connected to the computer like any other monitor, so it is only

necessary to adjust the point of view FOV to match the HMD. And, on the other hand,

the head tracker has only to emulate the mouse, that is, the operating system recog-

nizes it as a regular pointing device, and the head rotations up, down, left and right are

translated into mouse movements up, down, left and right.

The possibility of using a head tracker and a HMD in a 3D first person videogame

is not new, as it is something that could be found in earlier devices. In fact, we can

find previous examples, as the Victormaxx HMD [4] with mechanical tracking

launched in the last decade of the last century; or the Trimersion HMD [5] in the first

decade of the present century, which not only included tracking, but it also included a

wireless communication. It can be said that these two products failed because of their

poor display specifications compared to those offered by the monitors they had to

compete against. The visual fatigue can be added to these drawbacks, which is usually

produced by the prolonged use of a HMD. However, despite these inconveniences,

these systems would have succeeded if the experience had been worthwhile to the

player, who would forget about the bad resolution and eye strain until the end of the

game. The biggest problem lies in the design of first person shooters, that in order to

reduce the number of degrees of freedom of the character, and to make it more user-

friendly, combine the view and the gun under the same control, typically the mouse,

so that the user looks where he points his weapon, and shoots where he stares to. Cer-

tainly, the user would want to shoot towards the target in front of him more often than

to any other direction, and this reduction the degrees of freedom makes it easier and

more comfortable the task of shooting down the enemies. But when the user wears the

HMD, and the head tracker takes control of the view and the weapon emulating the

mouse, this task is no longer comfortable or easy, because although looking around by

turning the head is more natural, aiming with it is not, which results not only in eye-

strain but also in neck fatigue.

For this reason, in order to enjoy the virtual reality technology with our favourite

first-person shooter, it is necessary to separate view and weapon, having each one its

own controls. It seems clear that the head tracker should keep its original function,

which is to capture the head orientation and map it to the player point of view in the

game. Therefore, a different control for the weapon must be found. This control can

be a joystick or a gamepad, as evaluated in [6], and it can even be shaped as a weap-

on, like the controller shipped with the Trimersion HMD. But beyond that, it is possi-

ble to provide more realism to the game if we can capture the position and orientation

of both the user’s head and hand (or the device held by the hand). This is the inten-

tion, for example, of the company VRcade [7], using the Oculus Rift as the HMD but

adding an optical tracking system which captures in real time the position and orienta-

tion of both the HMD and a weapon-shaped device carried by the user, thanks to the

reflective motion-capture balls mounted on them. And this is not new, since at the

beginning of the 90s the company W industries, later renamed as Virtuality [8], in-

stalled entertainment systems worldwide in arcade rooms, which included a HMD and

a joy-stick, tracking their position and orientation thanks to an electromagnetic track-

ing system. Games running on these vintage platforms already separated gun and

sight, as for example Dactyl Nightmare [9]. The problem is that, although the prices

120

of these computers are now lower, they remain out of the reach of the average con-

sumer, both in terms of money and space. For example, an OptiTrack [10] system

costs in the order of thousands euros, and requires also a space of about 5x5 meters

(25 m2) to create a capture zone of 3x3 meters (9 m2).

Beyond the money or space, the first thing that the videogame industry will be

more interested in, is whether it is worth, that is, if the game experience perceived by

the player can outweigh the cost. In this case, the next step is to see if it can be put

into practice, from the point of view of both software and hardware and, focusing on

the later, if the cost and space requirements can be reduced to a reasonable magnitude.

Therefore, in the case of software, it should not be too hard to separate the move-

ments of the eye and the gun, possibly also adding some more items in the setup menu

in order to establish the separated mapping of the sight and the weapon with their

corresponding inputs. The problem, if anything, is in the operating system, which is

only able to recognize one mouse, so while the support of the head tracker can be

eased emulating the mouse axes, the weapon tracking requires a different approxima-

tion, for example emulating the axes of a joystick or gamepad. In fact, although this is

not usually found in commercial first-person shooters, it is found in many other

games, especially sea, land or aircraft simulation, where the user can steer the vehicle

towards one direction while looking around, as in car racing, flight simulators or tank

battles. In the latter case, for example, there are many degrees of freedom when com-

manding a tank, the hull can move in one direction while the turret rotates freely, the

barrel can aim with a given elevation angle, and even the commander can see a differ-

ent sight leaning out of the hatch.

Regarding hardware, in recent years we have seen new generations of game con-

soles that introduced novel devices that capture user movements, either of the hand or

of the whole body. These systems are based on inertial technology –accelerometers,

gyroscopes- such as the Wii and Wii U controls [11]; and optical technology, such as

Sony Playstation Move [12] or Microsoft Kinect [13]. The same technologies have

also been introduced in the PC videogames market, with joysticks and gamepads that

include the same inertial technology, like the Cyberstik XP and G-Pro controllers, and

even electromagnetic tracking systems, like the Razer Hydra [14]. The interesting

thing about these systems is that they try to limit their space demands to the space

available at home, and more importantly, the cost is really affordable to the player.

All in all, we postulate in this paper that there are benefits for the player, and that it

is possible to transfer this technology to his home with an affordable cost and with

acceptable space constraints. Thus, those benefits will be identified in the following

sections, then a demonstration will follow of how it is possible to reduce the required

space doing it without the position information, and finally a prototype will be de-

scribed that takes this concept into practice. The paper ends with the conclusions that

can be extracted from this work, and future work proposals.

121

2 The benefits of an immersive experience for the player

This section is a review of different studies comparing the most common way to play

a first-person shooter (using a monitor, a keyboard and a mouse, and with the weapon

coupled with the eye and directed by the mouse) to other alternatives based on virtual

reality technologies. These technologies aim to increase the fidelity of the action

while pursuing a more engaging and entertaining game for the user.

Thus, the authors of the experiment described in [15] created a first-person shooter

in which users had to take down a certain number of ghosts. They had to do it twice,

the first time using the classical input configuration (mouse and keyboard) and seated

in front of the monitor, and the second time also seated but using a HMD and a data

glove, with a sensor on the HMD to let the user look around and another on the wrist

to let they aim. In this case, the image presented on screen was drawn taking the posi-

tion and orientation of the sensor located on the helmet, while just the orientation was

taken from the wrist sensor to move a cursor on the image. The virtual reality equip-

ment consisted of a VFX3D helmet with a resolution of 263x480 pixels and 24° of

horizontal FOV [16], a Pinchglove and a Flock of Birds electromagnetic tracking

system. The findings of this experiment showed that, although 85% of participants

preferred to aim with the mouse because it had a higher hit rate, the preference for

separating the point of view from the gun were divided to 50%. Also, 60% of partici-

pants preferred the helmet to look for the ghosts, while 90% claimed it was more fun.

Finally, everyone agreed that it was more immersive.

In [17] a first-person shooter was also evaluated comparing the classic set-up of

monitor, keyboard and mouse to another immersive set-up, but this time the game

involved two users and, in the immersive set-up, both of them played standing, not

seated. To immerse the user in the game, the authors used a HMD and a wand, both

with position and orientation sensors. Again, the authors did not use the gun position.

First, the scene is rendered using the position of the helmet sensor and the orientation

of the wand sensor, and then displayed as a thumbnail in the corner of the screen,

what they called Gun Radar. The pixel right in the center of the Gun Radar is where

bullets are shot to. Then, they take the depth value of this pixel and render the scene

again from the position and orientation of the helmet sensor. The virtual reality

equipment was composed of an InterSense IS900 hybrid tracking system (inertial-

ultrasonic) capturing a space of 2x4 meter, using 4 sensors, 2 HMD and 2 wands.

Although it is not explicitly stated, looking at the photos it can be said that that the

HMD used is the GVD510 by Oriscape [18], with a resolution of 640x480 pixels and

a diagonal FOV of 28º. The conclusions of this work are that users perceive that the

wand is as precise as the mouse, but it is more fun, and it is also clear that the users

preferred the immersive configuration.

For our part, we describe in [6] an experiment where users also tested a multiplayer

first-person shooter, particularly one trying to reproduce Virtuality’s Dactyl Night-

mare game. This time, the users did not only use two configurations, but a range of

combinations of output devices -monitor and HMD-, input devices -keyboard, mouse,

gamepad, joystick, air joystick and head tracker-, and several ways to map these input

devices to the degrees of freedom of the point of view and the weapon, ranging from

122

fully coupled to fully decoupled, evaluating possible intermediate combinations. A

total amount of eight configurations were evaluated. The HMD was one PC/SVGA i-

glasses with a resolution of 800x600 pixels and a diagonal FOV of 26º [19], and the

head tracker was an InterSense Intertrax 2 with 3 degrees of freedom. The air joystick

was a Cyberstik XP with an accelerometer capable of measuring 2 degrees of freedom

of movement in the air (pitch and roll). The findings of the experiment were that the

combination that provided greater sense of immersion, allowed to better direct and

coordinate the point of view and the weapon, and obtained the highest rating from the

users that tested them was the one formed by the HMD, the head tracker and the

gamepad, being the gamepad used to control both the gun and the user movement.

More recently, in [20], four different configurations are also compared for the same

first-person-shooter. These configurations are the result of combining two types of

displays, labeled as low and high fidelity (LD and HD) and that correspond to a pro-

jection screen and a six-sided CAVE, and two types of input, which are also labeled

as low and high fidelity (HI and LI) and correspond to the mouse and keyboard com-

bination on one side, and 3D glasses and wand, on the other. In this case, the position

of the gun was used to control the gun, so the high-fidelity input took both the posi-

tion and orientation of the 3D glasses to draw the scene from the point of view of the

user. In the same way, the position and orientation of the wand was also used to aim

and fire the gun. On the other hand, the combination of low fidelity in display and

input introduced several differences to the classic layout of a user sitting in front of

the monitor playing with keyboard and mouse, as this time the display was a projec-

tion screen and the user was standing, with the keyboard and mouse on a pedestal. In

order to avoid dizziness, the mouse was not mapped on the point of view, but it

moved a crosshair across the screen like a cursor in a window desktop. The virtual

reality system used was a six-sided CAVE system, 3x3x3 meters and a resolution of

1050x1050 pixels per screen, stereoscopic glasses, a wand, and a hybrid InterSense

IS900 tracking system. The findings of this study show that the combinations LDLI

and HDHI are the fastest because of the user familiarity with FPS games, in the case

of LDLI, and greater similarity with reality, in the case of HDHI. LI provides better

accuracy because the users need fewer bullets, as they first move the cursor and then

shoot instead of sweeping the horizon with their bullets, although the difference (49%

vs. 43% of HI) is not much. In contrast, LI receives more damage because the user

usually remains more static. Finally, HD allows seeing enemies using peripheral vi-

sion and HI gets lower times, being the HDHI the combination that provides most

presence, engagement and usability.

In view of the results of these studies, we can then conclude that, although the clas-

sic configuration of monitor, keyboard and mouse usually provide better results in

terms of accuracy, immersive settings allow the users to easily find the enemy with

their eyes, and are preferred by players, either because of their greater immersion,

realism and, above all, fun. In fact, in the evaluation described in [15], the participants

seemed to forget the effort required by the head and hand movements and the fatigue

they produce. More surprisingly, in these studies, both the resolution and the FOV of

the HMDs used were far from the characteristics of professional devices, which is

123

what the Oculus Rift aims to bring to the users. Therefore, just a better HMD could, in

any case, improve the results outlined here.

3 Orientation-only control models for immersive FPS games

Almost all the authors of the evaluations reviewed in the previous section do not use

the position that captures the sensor on the hand that aims, or on the devices that the

user holds in his hand, using solely the orientation given by that sensor to allow the

user to aim in a direction different from the view. Only in one of these works, the one

by McMahan et al., that position is used, that is, the authors read the position and

orientation of the head sensor to create the user point of view in the scene, and read

the position and orientation of the wand that the user holds to place and aim the

weapon in the scene. This last work is, therefore, the one that most faithfully repro-

duces the action of aiming and shooting in the real world.

However, none of these authors questioned whether it is really necessary or not, for

the game’s goal, to pick the position of the head, and the hand or the device held in

hand, in other words, if it is possible to do without these positions and still have a

game just as fun with only the orientation of the tracked body parts and devices. After

all, the FPS games for PC and consoles have had great success so far using one single

orientation, the same for the view and the weapon, and the devices that capture rota-

tional data, such as the inertial ones, are much cheaper than the systems that capture

position as well as orientation, either optical, electromagnetic or hybrid, and also do

not require the room that these other systems require for running. Sure, doing without

position would make the game less realistic, but it comes without saying that this is

not the main goal. The specific goal of a FPS game is to kill all the enemies, and to do

that we can not lose accuracy, and the common goal of every game is to have fun, and

to have that we must avoid making weapon aiming so easy that it becomes boring.

Fig. 1. Participant in tests (left), and screenshot of one of these tests (right)

With this idea in mind, in [21] we described the development of an immersive FPS

game, using an i-glasses X2 as a virtual reality helmet, a Wiimote dressed as a re-

volver, and an iotracker optical tracking system [22] with two rigid bodies, one on the

124

i-glasses and the other one on top of the Wiimote (Fig. 1). With this game, an experi-

ment was carried out to evaluate different control models, using the position and the

orientation of both the user’s head and the Wiimote in just one of them –the most

realistic one-, and getting rid of the position in the rest of them, that is, capturing and

using only the orientation of the head and the Wiimote.

Focusing on the models without position, these ones fill in the missing information

using a preset position for the avatar’s view –trying to macht the height of the user

when he is standing- and for the elbow or the wrist of the avatar’s arm that holds the

weapon –relative to the view point, to the right or to the left of the trunk if the user

holds the Wiimote revolver with one hand, or centred in front of the chest if the user

yield it with two hands-. The user’s head orientation is then mapped onto the avatar’s

view point, and the Wiimote orientation is mapped onto the avatar’s elbow or wrist

depending on the control model.

The evaluation proved that similar results to the position and orientation model

were obtained with a model that mapped the gun tracked orientation to the avatar's

elbow (Fig. 2), when holding the weapon with one hand, and even better results were

obtained with the model that mapped the orientation on both elbows, when yielding

the gun with two hands (Fig. 3). This confirmed the feasibility of replacing the posi-

tion and orientation model with one that relies solely on the orientation, less realistic

but, as was pointed by the participants in the questionnaires, just as fun.

Fig. 2. One-hand model, aiming with the elbow

Indeed, something that also became apparent during the tests was the willingness

that users have to this new way of playing. After testing, the majority of users was

surprised and praised the realism and the degree of immersion achieved. Some of

them even asked if there was something similar for sale to enjoy at home. In short,

users are very attracted by this technology. In this regard, the test that recreated an

existing commercial game –Link’s Crossbow Training- was the one that the users

enjoyed most. The challenge of having a limited time and a score counter did cer-

tainly encourage their competitiveness. Almost everyone wanted to improve their

initial score when they repeated the test, asking also for the final score of other par-

ticipants to see how good they had played. This response from users made it clear the

125

possibility of bringing a system similar to the one proposed in this work to the video-

game market.

Fig. 3. Two-hand model, aiming with the elbows

4 Description of the prototype of the proposed VR system

One of the works that we proposed in [21], as a continuation to the conducted ex-

periment, was the development of a prototype that could exploit the conclusions de-

rived from that experiment and bring them to practice, that is, a low-cost virtual real-

ity system that captures the user’s head and hand orientation and, with that prototype,

then repeat the evaluation to verify that the results can be translated from the iotracker

used in that experiment to this other virtual reality system. Thus, this section describes

the prototype that is proposed by our laboratory.

Fig. 4. Wiimotes with Motion Plus extension (left), and prototype in use (right)

The developed prototype consists of a HMD –in particular, one i-glasses X2- and

two Wiimotes with the Motion Plus [23] extension, one of them used as a head track-

er and the other one as a controller, the latter also with Nunchuk extension (Fig. 4).

Other authors have proposed their own solutions, such as the VR Kit – HMD [24],

which includes one Spacepoint Fusion to capture the head orientation, and a Ga-

metrak to capture the positions of the head and hand, with the hands holding a Wii-

126

mote and a Nunchuk; however, the proposed solution only uses the joystick and but-

tons of the Wiimote and Nunchuk, and the author recognizes that it would require a

second Spacepoint Fusion for capturing the controller orientation, which it is solved

in our prototype with the Motion Plus. A similar proposal is the UCAVE [25], which

uses the orientation sensor of an iPod to capture the hip orientation, and a Razer Hy-

dra electromagnetic tracking system with the emitter in the hip and the sensors on

head and hand, to capture the position and orientation of the head and hand in relation

to the hip; however, the authors admit that the system suffers a noticeable latency

when the hip movements are frequent, which can be expected to occur in an immer-

sive FPS, and our prototype does not require capturing positions and thus we can free

the user from carrying the Hydra emitter in his belt.

The idea of using two Wiimotes with Motion Plus was thought to be the best due to

several reasons. Firstly, the Wiimote is a controller that we had used before [21], and

it is easy to find software to get data from it, but the 3-axis accelerometer of the origi-

nal controller allowed only capturing the tilt –roll and pitch angles-, not the rotation

about the vertical axis –yaw angle-; however, the Motion Plus accessory added three

gyroscopes that, together with the accelerometer, turn the Wiimote into a 3-DOF ori-

entation sensor capable to capture roll, pitch and, yaw angles. Moreover, the set is

affordable, around 45 euros the controller and 15 euros the accessory, at the moment

of writing this.

In order to use the Wiimotes, it was necessary to solve two problems: how to poll

data from a Wiimote, and how to input that data to the FPS game. As said before,

there are software libraries that makes it simple to read data from a Wiimote, however

only few of them support the Motion Plus accessory, and those that support it only

return raw data, not the angles we want. The WiiYourself! library [26], which was

already used in [21], was found to be the most suitable one for our purposes, and this

way we developed on top of it several functions to calibrate the data sent by the Mo-

tion Plus –rotation speed, given in degrees/second-, to combine the data with that

obtained from the Wiimote accelerometer -sensor fusion-, and finally to calculate the

desired roll, pitch, and yaw angles (Fig. 5). Important to note is that these angles are

not so easy to calculate because we are not interested in absolute, independent angles,

but instead we want to find the relative, dependent Euler angles that can be composed,

in a given sequence, in a single transformation matrix.

The second problem that we needed to solve was how to deliver the Wiimote data

to the FPS game. One way to do this would be to emulate other devices, such as the

mouse or the joystick. However, we would lose one degree of freedom if we project

the 3-DOF of the orientation sensor onto the 2-DOF of the mouse. Besides, given that

the goal of the prototype was to serve as a technology demonstrator and to repeat the

previous evaluation with it, it was thought that the best option was to use the VRPN

library [27], already used in that experiment to deliver to the FPS game the data gen-

erated by the iotracker system. The fact is that with VRPN it is easy to change the

system that produces the data –the VRPN server, the tracking system-, without chang-

ing the code of the application that consumes that data –the VRPN client, the FPS

game-, because the data is packed in a standard format and delivered by network.

Thus, we programmed a new VRPN server that, built upon the WiiYourself! library,

127

supports several Wiimotes with Motion Plus extension, is able to calculate the roll,

pitch, and yaw angles, and sends the data through the network to the VRPN clients as

separate values (Analog server, in terms of the VRPN library), or composed in a sin-

gle quaternion (Tracker server), apart from other data of interest, such as the state of

the buttons (Button server).

Z

Y

X

y

Ayz

Axy Axz

a
b

c

j

J

G

j x G
J x G

∆∆∆∆yaw

∆∆∆∆yaw

y
j

Y

Fig. 5. To obtain the yaw angle, the gyro angles (Axy, Axz, Ayz) are first calculated from the

gyro speeds for a lapse of time, then they are used to find the direction of the Wiimote longitu-

dinal axis at the beginning of that lapse, y-axis, relative to the device XYZ local system at the

end of it (left pic.), and finally the yaw is the angle between the projections of the axis before

(y-axis) and after (Y-axis) onto a plane perpendicular to the gravity vector, G (right pic.)

The preliminary tests with the prototype revealed a satisfactory performance. As

the system is based on inertial technology there are, in particular, two possible prob-

lems that deserve our attention: latency and drift. The latency is, in our system, the

sum of the time to read the data from the Wiimote, to process it, to send it over the

network, and to use it in the application. From these times, we can disregard the net-

work transmission if, as in our case, both the server and the client run in the same

computer. The processing time is our highest concern, because filtering and combin-

ing data from the acceleration and gyro sensors to get a stable, yet usable signal can

increase latency in a significant way; in our server, however, the computation is fast

and the filtering is reduced to a minimum, nevertheless obtaining a signal comfortable

for the user.

With regards to the drift, this is the result of the accumulation of errors, in particu-

lar in the rotation about the vertical axis (yaw angle), given solely by the gyroscopes

of the Motion Plus, as the errors in tilt (roll and pitch angles) are quickly and easily

removed with the gravity vector that is obtained by the acceleration sensor of the

Wiimote. The drift can be unnoticeable if the user only makes use of one single orien-

tation sensor, as in the VR Kit, but it can become visible to the user with two sensors

if the drift is different in each of these devices. Our first tests with the prototype,

however, show promising results, and as a consequence we plan to start soon its for-

mal evaluation.

128

5 Conclusions and future work

Although there have been, and there are, many proposals and attempts to bring virtual

reality to video games, one that is receiving more publicity these days is the Oculus

Rift helmet, especially oriented to the genre of first-person shooters. With its wide

FOV and its head tracker it allows the player look and aim around. However, to avoid

repeating past failures, it is imperative to separate view and weapon, tracking inde-

pendently the head and hand of the user. In [21], we show that it is not necessary to

capture the position, just the orientation, and in this paper we have presented and

described a prototype that, based on two Wiimotes with Motion Plus, also shows how

this result can be brought to the player at an affordable price.

The most immediate continuation of this work is the repetition of the previous ex-

periment, this time with the developed prototype, although we would not need to re-

peat it completely, only with the control models that proved to be more valuable.

Afterwards, it would be interesting to extend the experiment by allowing the user to

move around the game scenario, possibly using the joystick on the Nunchuk, to eval-

uate whether this variable has any impact on the results so far obtained. As for the

VRPN server, its code will be released to allow others to make use of it. To add it to

the VRPN library distribution, however, it should be based on the Wiiuse library used

in the server already included in the current VRPN release, but Wiiuse does not yet

support the Motion Plus extension. In fact, the WiiYourself! library only supports

Motion Plus as an extension to the original Wiimote, not the new Wiimote controller

with Motion Plus inside, another issue that could be addressed in following versions.

Acknowledgements

This work has been supported by the project TIN2012-34003, funded by the Spanish

Ministry of Science and Innovation.

References

1. Oculus VR, Inc.: Oculus Rift Headset. Accessed May 2013, URL:

http://www.oculusvr.com/

2. Oculus VR, Inc.: Blog: Building a Sensor for Low Latency VR. January 2013, URL:

http://www.oculusvr.com/blog/building-a-sensor-for-low-latency-vr/

3. Id Software: Quake. Accessed May 2013, URL: http://www.idsoftware.com/games/quake/

4. Gradecki, J.: The Virtual Reality Construction Kit. John Wiley (1994)

5. Kuntz, S.: The Story behind the Trimersion HMD. February 2007, URL:

http://cb.nowan.net/blog/2007/02/09/the-story-behind-the-trimersion-hmd/

6. Delgado, F., García, A.S., Molina, J.P., Martínez, D., González, P.: Acercando la Tec-

nología de Realidad Virtual a los Videojuegos de Acción en Primera Persona. In: II Jorna-

das de Realidad Virtual y Entornos Virtuales, JOREVIR, Albacete, Spain (2008)

7. Brown, P.: VRcade Sets its Sights on the next Leap in Immersive Gaming. May 2013,

URL: http://www.gamespot.com/features/vrcade-sets-its-sights-on-the-next-leap-in-

immersive-gaming-6408035/

129

8. Cotton, B., Oliver, R.: Understanding Hypermedia: From Multimedia to Virtual Reality.

Phaidon Press Ltd. (1992)

9. Arcade History: Dactyl Nightmare (1991). Accessed May 2013, URL: http://www.arcade-

history.com/?n=dactyl-nightmare&page=detail&id=12493

10. NaturalPoint, Inc.: OptiTrack Motion Capture. Accessed May 2013, URL:

http://www.naturalpoint.com/optitrack/

11. Lee, J.C.: Hacking the Nintendo Wii Remote. In: IEEE Pervasive Computing, 7(3), pp. 39-

45 (2008)

12. Humphries, M.: Review: PlayStation Move, Geek.com. September 2010, URL:

http://www.geek.com/articles/games/review-playstation-move-20100917/

13. Zhang, Z. Y.: Microsoft Kinect Sensor and Its Effect. In: IEEE Multimedia, 19(2). pp. 4-

10 (2012)

14. Razer: Hydra. Accessed May 2013, URL: http://www.razerzone.com/es-es/gaming-

controllers/razer-hydra

15. Torchelsen, R.P., Slomp, M., Spritzer, A., Nedel, L.P.: A Point-and-Shoot Technique for

Immersive 3D Virtual Environments. In: Simpósio Brasileiro de Jogos para Computador e

Entretenimento Digital, SBGames, Brazil (2007)

16. Bungert, C.: Unofficial VFX3D page, Accessed May 2013, URL:

http://www.stereo3d.com/vfx3d.htm

17. Zhou, Z.Y., Tedjokusumo, J., Winkler, S., Ni, B.: User Studies of a Multiplayer First Per-

son Shooting Game with Tangible and Physical Interaction. In: Virtual Reality, Lecture

Notes in Computer Science Volume 4563, pp. 738-747 (2007)

18. Oriscape: GVD510-3D Head Mounted Display. Accessed May 2013, URL:

http://www.oriscape.com.cn/en/products.asp?sortid=251&id=118

19. I-O Display Systems: i-glasses. Accessed May 2013, URL: http://www.i-glassesstore.com/

20. McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating Display Fidelity

and Interaction Fidelity in a Virtual Reality Game. In: IEEE Transactions on Visualization

and Computer Graphics, 19(4), IEEE Computer Society (2012)

21. Olivas, A., Molina, J.P., Martínez, J., González, P., Jiménez, A.S., Martínez, D.: Proposal

and Evaluation of Models with and without Position for Immersive FPS Games. In: 13th

International Conference on Interacción Persona-Ordenador, Elche, Spain (2012)

22. Pintaric T., Kaufmann H.: Affordable Infrared-Optical Pose-Tracking for Virtual and

Augmented Reality. In: Trends and Issues in Tracking for Virtual Environments Work-

shop, IEEE VR 2007, Charlotte, NC, USA, pp. 44-51 (2007)

23. WiiBrew: Wii Motion Plus. Accessed May 2013, URL:

http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Wii_Motion_Plus

24. Kuntz, S.: VR Kit – HMD : Portable VR. June 2010, URL:

http://cb.nowan.net/blog/2010/06/30/vr-kit-hmd-portable-vr/

25. Basu, A., Saupe, C., Refour, E., Raij, A., Johnsen, K.: Immersive 3DUI on one Dollar a

Day. In: IEEE Symposium on 3D User Interfaces, 3DUI, pp. 97-100 (2012)

26. Gl·tter: WiiYourself! Native C++ Wiimote Library. Accessed May 2013, URL:

http://wiiyourself.gl.tter.org/

27. Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: A

Device-Independent, Network-Transparent VR Peripheral System. In: ACM Symposium

on Virtual Reality Software & Technology, VRST, Banff Centre, Canada (2001)

130

UHotDraw: a GUI Framework to Simplify
Draw Application Development in Unity 3D ?

Ismael Sagredo-Olivenza, Gonzalo Flórez-Puga,
Marco Antonio Gómez-Mart́ın and Pedro A. González-Calero

Dep. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

email: isagredo@ucm.es, {gflorez,marcoa,pedro}@fdi.ucm.es

Abstract. Unity 3D is a widely used middleware for game development.
In addition to the core technology, a number of extensions or plug-ins
have been created by third-party developers to provide additional func-
tionality. Nevertheless, the support Unity 3D provides for building GUI
for such plug-ins is at a very low level, and for that reason we have
designed and built UHotDraw, a framework in C# that simplify the
development of GUI and draw applications in Unity 3D.

1 Introduction

The Computer revolution has brought mankind a plethora of tools that ease
tasks that in the pre-digital era were made by hand. Nowadays, those tedious
tasks that required several hours of hard work are done by machines driven by
pieces of software in such a way that are able to complete the same job in less
time and with minimum human supervision.

Computer engineers themselves have profited of this process and we have
developed a wide range of tools whose unique goal is to ease the task of building
other software. In the list of technologies and tools, we can include from high-
level languages to those of the model-driven architecture (MDA) movement, by
way of code-generator tools, version control systems, and so on.

The Game development area has not been immune to this tendency. In a
typical game studio we find professionals of different areas such as game de-
signers, programmers and artists (not to mention those roles not related to the
development itself such as marketing). Traditionally, programmers have had two
different responsibilities: in one hand they have to provide tools to the rest of
the team (being the level editor, the main one); in the other hand, they develop
the code for the game itself.

Over the last decade, however, a different approach has arisen, allowing pro-
grammers to be partly relieved of those responsibilities. They are known as game
engines: a piece of software that integrates both development tools and game
code. The entry point to the game engine is the level editor, where designers

? Supported by the Spanish Ministry of Science and Education (TIN2009-13692-C03-
03)

131

build the different scenes that conforms the game. The level editor itself is usu-
ally in charge of creating the game executable for the target platform which
usually incorporates levels, assets created by artists, game engine code and ad-
ditional code created by the studio developers, including the specific behaviours
that their game needs. The significant cost savings in development time and
team size compensate for the cost of licensing the game engine.

According to a survey done to game developers by Gamasutra1, a portal
specialized on games, the two more valuable aspects of a game engine are the
rapid development time and its flexibility and easy extendability. Regarding this
last point, it involves two different aspects: how easy is to extend the game
engine creating new behaviours and code to be added to the final game and the
ability to extends the tools themselves incorporating functionality that is used
by designers and artists at development time but that are not seen by final users.

One of the most used game engines is Unity3D2. According to the survey
mentioned before, up to 53.1% of independent game studios are using it, mainly
for game development over mobile platforms based on both Android and IOS.

Though those numbers support its quality to a large extent, we have identified
a weak point that complicates the extensibility of the editor itself. As we will
describe in the next Section, Unity neglects the way programmers may create
Graphical User Interfaces (GUIs) and incorporate them into the editor. In fact,
it does not even provide facilities in order to create GUIs for the game itself.
Luckily, different libraries have appeared for building in-game GUIs (mainly
menus and HUDs), but they cannot be used to add windows to the Unity editor
itself.

This paper presents UHotDraw, a framework developed by the authors that
ease the task of building GUIs to extend Unity editor. Our main motivation was
the creation of a visual editor of non-player character (NPC) behaviours using
mainly behaviour trees [6,5]. Therefore, UHotDraw incorporates not only the
typical collection of widgets available in other general purpose GUI frameworks,
but also an extended support for trees.

2 Unity 3D

Unity 3D is a relative modern game engine that has become popular in the
last few years. It was created by the Danish company Unity Technologies. The
philosophy behind this engine is to “democratize the game develop” trying to
make it as much accessible as possible. This engine is widely used in the game
industry, especially among the independent game studios, because it is powerful,
easy, multiplatform and the license is less expensive than other engines.

Unity can be extended using scripting languages. Its extensibility makes pos-
sible the existence of a digital store that is smoothly integrated within the Unity
Editor and allows users to buy extensions, meshes, textures, scripts and other

1 http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_

leans_heavily_toward_iOS_Unity.php#.UFze0I1lTAE
2 http://unity3d.com/

132

assets that are easily incorporated to the projects. Moreover, the companies that
develop tools for Unity can share/sell their products through this store.

Regarding this extensibility, developers may create scripts using three differ-
ent programming languages: C#, Javascript and Boo (a Python inspired lan-
guage). Using them programmers may add components [8,7,1,3] to the project
that are later assigned to game entities. Additionally, they may create utility
classes that are used by those components during the game.

Unity also allows to extend the Unity Editor itself. The process consists on
creating scripts and adding them to a special folder into the game project. The
game engine assumes that those classes are meant to be used at development
time and are not included in the final compilation of the game. In fact, the API
provided by those classes is different from the one available for scripts created
for the game (it has, nevertheless, some common functionality). One part of such
API is related to the creation of windows and widgets into the editor allowing
users to create their own tools and integrate them into the Unity interface.

Unfortunately, the API provided by Unity to create GUIs is far from perfect.
As we will describe shortly, it is tedious, prone to errors and not very object
oriented. Having as motivation the integration into Unity of a behaviour editor,
this forces us to create a framework called UHotDraw that facilitates the creation
of complex GUIs over the narrow Unity GUI API.

The main inconvenience of this GUI API is the lack of separation between the
construction of widgets and the management of the events they fire. Unity does
not provide any class that represents a widget like a button or label. Therefore,
it is not possible to store a reference to them once created to change their state.
The process, from the developer point of view, is quite different from the one
used by frameworks like Swing [4] or Windows Forms3.

To get a better idea of the implications, let us see a small example: imagine
we want to create a minimal window with three buttons and a label. When
pressing each button the label should change its alignment according to the
button pressed (left, center or right).

In Unity (figure 1a) the construction of such window starts with the addition
of a new class that inherits from the EditorWindow and the creation of just one
method, OnGUI, that is called whenever there is any event on it. This method
is responsible of both creating the buttons and label and processing the events.
This is possible because the same method that creates/paints a widget like the
button returns if that button was clicked last frame (if it existed). Managing
the location of the widget is done using absolute coordinates; there is not any
kind of layout manager that dynamically place the widgets depending on the
available size.

The code needed to create the windows described above is:

public class AlignmentExample : EditorWindow {

public void AlignmentExample () {

_labelPos = new Rect(25, 25, 100, 20);

3 http://msdn.microsoft.com/es-es/library/dd30h2yb.aspx

133

(a) Window example in Unity (b) Window example in Swing

Fig. 1: Example window

_labelTxt = "Align Left";

}

void OnGUI (){

GUI.Label(_labelPos ,_labelTxt);

createButtonAndProcessEvents (25, 25, "Left", 25);

createButtonAndProcessEvents (150, 25, "Center", 150);

createButtonAndProcessEvents (275, 25, "Right", 275);

}

void createButtonAndProcessEvents(

int posX , int posY ,

String alignment , int labelPosX) {

bool pressed = GUI.Button(

new Rect(posX , posY , 100, 20),

alignment);

if (pressed) {

_labelPos.x = labelPosX;

_labelTxt = "Align " + alignment;

}

}

private Rect _labelPos;

private string _labelTxt;

}

As the code reveals, there are no objects representing the buttons nor the
label. On the one hand we need to “create” all the widgets over and over again
to keep them on the screen. On the other hand we have to process the button-
pressed event on the same section of code where we create it. Moreover, as
Unity does not track the widgets that we created last frame, we are responsible
of maintaining their state (position, caption). In the example above, we need
to store the text and position where we place the label. Just to compare this
tedious approach with other GUI frameworks, let us see how we can be develop
a similar functionality using the Java Swing API (figure 1b):

public class AlignmentWindow extends JFrame {

134

public AlignmentWindow () {

setSize (320, 100);

JPanel buttons = new JPanel ();

this.add(buttons);

buttons.add(new AlignmentButton ("Left", LEFT));

buttons.add(new AlignmentButton (" Center", CENTER));

buttons.add(new AlignmentButton (" Right", RIGHT));

label = new JLabel (" Alignment Left ");

this.add(label , BorderLayout.SOUTH);

}

class AlignmentButton extends JButton

implements ActionListener {

public AlignmentButton(String text , int alignment) {

super(text);

labelText = text; labelAlignment = alignment;

addActionListener(this);

}

public void actionPerformed(ActionEvent e) {

label.setText (" Alignment " + labelText);

label.setHorizontalAlignment(labelAlignment);

}

String labelText;

int labelAlignment;

}

JLabel label;

}

Though the code is a bit larger, its design is clearer. Class constructor is
responsible of creating the widgets. Once they are created, developer does not
have to worry about tracking them for painting. Moreover, we are able to extend
the JButton class to create a new kind of buttons that, when pressed, change
the text and alignment of the label according to some parameters given to them
during its construction (and stored in the button as attributes). This class design
is more extensible, easy to use and fits well with the Model-View-Controller
architectural pattern [2] (MVC) that is extensively used to create GUIs.

Having seen this small example, it is plain that Unity GUI support is poor
and difficult to use for the creation of complex GUIs. It may be objected that
not many people will try to extend the editor itself with their own functionality.
However the lack of GUI support is also suffered by the in-game GUI, because
the API is mainly the same. Luckily, different initiatives have appeared to help
developers in the creation of these in-game GUIs. To mention just a few, Unity
Store makes available popular libraries such us NGUI or UniGUI that joins a
good object oriented design and more professional results. Unfortunately those
libraries are based on capabilities such as render to texture that are not available
in editor mode, and therefore they cannot be used to extend it.

135

As far as we know there is only one extension, called EWS GUI Editor 4,
that allows to easily extend both editor and games. However, it only allows the
creation of forms and rendering textures but not the complete set of features
needed to build a plug-in like the one we had in mind. EWS GUI Editor is not a
framework but rather a graphical editor for the Unity GUI and doesn’t allow to
create complex layouts like trees, graphs or hierarchical containers. This editor
is designed to create simple widgets like boxes, buttons, text fields, textures,
sliders, etc. Also, this tool is not extensible and is a simple wrapper of Unity
GUI, and not provides a oriented object GUI framework.

In the figure 2 we can see a screenshot of EWS GUI Editor showing the type
of graphical interfaces that this editor allows to build.

Fig. 2: EWS GUI Editor interface example

At this point, we were forced to develop UHotDraw, a framework that, using
the limited Unity capabilities, eases the task of building a complete graphical
editor and integrate it, not only into the editor but also into the game itself (if
that were needed in the future). During the design process of the framework we
analysed some GUI frameworks that are described in the next section and the
source code of Strumpy Shader Editor. This editor is an extension of Unity that
can be found in the Unity Store and presents the user some widgets similar to
the ones we wanted for our behaviour editor. Unfortunately, we found that the
implementation of the plug in was based on the OnGUI method without any kind
of abstraction layer or framework, so we discarded it as a source of inspiration.

3 Other graphical editor frameworks

For the creation of our framework we have documented us and we analysed
various graphical editor frameworks, including JHotDraw and GEF.

Both are two good examples of how a graphical editor framework should be
structured. Furthermore, both use a lot of design patterns that we can reuse in
our own framework for Unity.

4 https://www.assetstore.unity3d.com/#/content/8391

136

3.1 JHotDraw

JHotDraw is a Java GUI framework for creating structured graphics. According
to its own creators, Erich Gamma and Thomas Eggenschwiler, this framework
is aimed to be a “design exercise” but also, it is already a quite powerful tool to
be used in a lot of domains 5.

JHotDraw uses a Model-View-Controller paradigm which separates applica-
tion logic from user interface dependencies. In this paradigm, the view is usually
responsible for displaying the information and drawing the user interface. The
controller handles the user input events and serves as an intermediary between
the model and view and finally the model is a logic representation of the appli-
cation. We can see a scheme the MVC design parading in the figure 3.

Fig. 3: Model view controller MVC

The basic components of JHotDraw’s architecture are shown in the figure
4. The editor allows the creation of two basic figures: the graphical composite
figures and Line Connections. Any other shape must inherit from these two basic
shapes.

Fig. 4: Basic components of JHotDraw

Some design features of JHotDraw are:

5 http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html

137

– Uses the Composite pattern to create shape containers.
– A Locator hierarchy that allows to choose the type of positioning among:

relative, absolute, offset, etc.
– AbstractHandle for manipulate the graphics shapes allowing scale, rotate,

set anchor points, etc.

JHotDraw implements a lot of design patterns that we can implements in
other graphical editor frameworks. It is a really pedagogical tool, that we used
as inspiration in many design decisions in our framework. For example, our
framework using the MVC scheme, and implement a Composite pattern for the
graphics containers. Also, we use a similar system of location types.

3.2 GEF

GEF (Graphical Editing Framework) is a set of Eclipse extensions that provides
technology to create graphical editors. GEF also uses the MVC paradigm and is
composed of three different tools: Draw2d, GEF (MVC) and Zest.

Draw2d is a layout and rendering toolkit building on top of Java SWT. All
2d figures in Draw2d are simple java objects that have no corresponding resource
in the operating system.

GEF (MVC) adds editing behaviour on top of Java SWT (for example,
it allows to create Trees, TreeItems, etc) and provides a rich set of tree-based
elements and graphical editors for Eclipse.

Zest is a visualization toolkit that provides a set of layouting algorithms
many interesting to apply in several forms of drawing.

In particular, our framework is inspired by GEF (MVC) and its fantastic
trees and also in Zest tree algorithms. In Gef is easy to construct a TreeView

inheriting from AbstractEditPartViewer class and implement corresponding
listener that TreeView need.

4 Our Framework

Generally speaking, a framework is a piece of software that provides generic func-
tionality that may be changed and extended by developers adding application-
specific code. By using frameworks, developers can benefit from using already
tested code that provides with a basic skeleton of an application with well defined
hot spots or hooks. These hooks are the extensibility points were programmers
may add their own code to build their applications. In order for a framework
to be useful, it must be adaptable to the needs of the problem domain which,
usually, is not known when the framework is designed.

Ideally, the framework must also hide the peculiarities of the target platform
with an abstraction layer that provides an easy-to-use API.

As it has been explained before, the main peculiarity of our platform is the
existence of just one method as the entry point to the GUI system, the OnGUI

method from EditorWindow. Using UHotDraw programmers do not have to

138

worry about it but just to extend a more versatile class called GenericWindow.
This class manages a list of the widgets being added to it and implements the
method OnGUI, that calls Unity for having them painted and find out whether
user events have been fired. When one of such events arise, the method itself
invokes other internal methods that will end up calling application-specific code.

The basic element that can be added to the window is represented by the
abstract class AGraphicObject (see a partial view of the class diagram of our
framework in figure 5). Different widgets and shapes are implemented as derived
classes from it, such as Label or AGraphicButton. They contain attributes with
their state (size, caption) and internal code that is called from the window the
widget belongs to.

UHotDraw also supports the creation of widgets hierarchies using contain-
ers. In particular, the class AGraphicContainer is just a container of other
AGraphicObject (using the composite design pattern [2]). Nowadays, UHot-
Draw has two containers. Both of them, when added to the parent container,
are placed on a specific location (whose coordinates may be given as absolute
or relative coordinates) and given a size. The main difference between both of
them is their behaviour when other widgets are added to them and their extent
exceeded the limits of the container itself. On the one hand, ClippingContainer
just clips (or hide) those parts of the widgets that go beyond its limits. On the
other hand, ScrollingContainer presents both horizontal or vertical scrollbars
to let the user select the specific area drawn on it.

Additionally, UHotDraw promotes the use of the MVC pattern in the appli-
cations using it. Without taking into account the low level of abstraction (where
the caption of a button could be considered the model of that button) and
staying at the level of the developer that uses UHotDraw, most of the classes
mentioned above are considered part of the view because they are responsible
of rendering themselves. They are also in charge of managing the UI events and
invoking external code that it is placed on the controller part of the MVC. This
invocation may be done using events/delegates (a high-level construction of sev-
eral high level languages such as C#), using the traditional observer pattern (in
a way similar to the one that appeared above in the Swing example) or thanks
to the overriding of a method in the base class (see the example below). Finally,
the controller will call other application-specific code that represents the domain
model being developed.

When creating the framework design, we had always the extensibility in our
sights. We have set some Hot Spots to extend its default functionality. The
framework user can create other types of AGraphicsContainer with special
functionality, composing them with other containers or graphic objects. The
user can create new Shapes and line connectors as well as new locations and
ASizeComps to adapt the location and size to their needs.

Additionally, UHotDraw provides a number of features that, while not strictly
related to the graphic GUI, are often widely used in most graphical editors. One
of these utilities is the undo/redo capability. The framework includes an action
manager (ActionMgr) that is responsible of issuing the different commands that

139

Fig. 5: Partial class diagram of UHotDraw

affect the model. Each command has to implement the interface IAction, that
contains the methods that have to be implemented to execute and undo each
particular action. By invoking these methods, the manager can undo and redo
chains of actions.

Other interesting feature is the set of mouse and keyboard events in the
InputMgr. If the user application needs to react to these events, it can implement
the IEventListener interface and register then in the InputMgr.

Lastly, our framework is developed on top of Unity GUI, meaning that almost
all elements can be displayed as game GUI. This unifies the way to build GUIs
regardless of whether we made an editor GUI or game GUI and help to simplify
the cumbersome GUI provided by Unity.

The following listing shows the implementation of the example from Section 2
using the classes in UHotDraw. The main window is a class that inherits from
GenericWindow. The Init method is responsible of creating (and adding) the
containers and widgets to the window. It does that via the AddChild method
implemented by UHotDraw. Though the details have been omitted on the code
shown below, the method instantiates the label that will contain a text and it will
change the text alignment in the tree buttons. As the swing implementation, the
buttons are implemented using a new class that inherits from AGraphicButton.
Now, however, instead of having the class to implement an interface we have
chosen override the method OnButtonPressed and add there the event manage-
ment.

public class AlignmentWindow : GenericWindow {

140

public void ArticleTest () {

Init ();

}

protected override void Init (){

AbsoluteLocator position = ...;

StaticSizeComp width = ..., height = ...;

_label = new Label(position , width , height , "Align Left ");

AddChild(_label);

position = new AbsoluteLocator(new Vector2 (25, 50));

width = ...; height = ...;

AddChild(new AlignButton ("Left", position , width , height));

position = new AbsoluteLocator(new Vector2 (150 ,50));

AddChild(new AlignButton (" Center", position , width , height));

position = new AbsoluteLocator(new Vector2 (275 ,50));

AddChild(new AlignButton ("Right", position , width , height));

}

protected static Label _label;

public class AlignButton : AGraphicButton {

// [Default constructor ommited]

protected override void OnButtonPressed () {

Vector2 pos = new Vector2(this.GetLocator (). GetPosition ());

pos.y += 100;

_label.SetText (" Align " + this.getCaption ());

_label.GetLocator (). SetPosition(pos);

}

}

}

A more complete example of using the framework can be seen in Figure 6
where we have implemented two different drawing areas. On the left side, we can
see a container where we draw graphics elements. In the right area, is intended to
draw buttons and other controls to implement different tools. The buttons extend
the class AGraphicButton, and override the OnClick method. The canvas is a
class that extends ScrollContainer to implement a TreeView container. The
class TreeNode is a ClippingContainer that contains various graphics shapes.
The lines inherit from the class LineConnection with a special location that
needs the begin and end position to be drawn.

5 Conclusions

Unity is a game engine widely used by developers, but with a poor API for build-
ing GUIs that it is hardly extensible and maintainable. A detailed analysis of

141

Fig. 6: Framework example

available plug-ins in the Unity Store, where third-party plug-ins are distributed,
led us to the conclusion that, although exists some support technology for build-
ing in-game GUIs, there are not many tools to help creating an editor extensions
itself .

UHotDraw, the framework presented here, has been developed following well-
know design principles for GUIs frameworks. In particular we take ideas from
JHotDraw, Swing and Gef. Our framework facilitates the creation of GUIs and
graphical editors in Unity, with a software design that promotes extensibility
and maintainability, through the well known MVC pattern, that separates the
underlying logic from the code of the event processing. Furthermore, as the
framework is built over Unity GUI API, it cannot only be used to create plug-
ins but also to develop in-game GUIs easily.

In the future we plan to use this framework to develop tools that facilitate
the creation of intelligent characters for games, within the Unity editor.

References

1. W. Buchanan. Game Programming Gems 5, chapter A Generic Component Library.
Charles River Media, 2005.

2. R. J. Enrich Gamma, Richard Helm, editor. Desingn Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Professional Computing Series, 1994.

3. S. Garcés. AI Game Programming Wisdom III, chapter Flexible Object-
Composition Architecture. Charles River Media, 2006.

4. P. V. Matthew Robinson, editor. Swing, Second Edition. Manning, 2003.
5. S. Rabin, editor. AI Game Programming Wisdom 3. Charles River Media, 2006.
6. S. Rabin, editor. AI Game Programming Wisdom 4. Charles River Media, 2008.
7. B. Rene. Game Programming Gems 5, chapter Component Based Object Manage-

ment. Charles River Media, 2005.
8. M. West. Evolve your hiearchy. Game Developer, 13(3):51–54, Mar. 2006.

142

Author Index

Aisa Garćıa, Francisco 1
Asensio, Javier 72

Barbancho, Ana M. 97
Barbancho, Isabel 97

Caballero, Ricardo 1
Camacho, David 84
Castillo, Pedro 1
Catala, Alejandro 49
Cotta, Carlos 61

De Las Cuevas, Paloma 1

Fernández Leiva, Antonio J. 61
Flórez-Puga, Gonzalo 120

Garcia, Juan Manuel 96
Garcia, Pablo 72
Garcia, Ruben 96
Garcia-Sanjuan, Fernando 49
Garćıa Jiménez, Arturo Simón 108
Garćıa Sánchez, Pablo 1
Gervás, Pablo 25
Gonzalez López, Pascual 108
Gonzalez Sanchez, Jose Luis 37
González-Calero, Pedro 13, 120
Gutiérrez Vela, Francisco Luis 37
Gómez-Mart́ın, Marco Antonio 13, 120
Gómez-Mart́ın, Pedro Pablo 13

Jaen, Javier 49

Lara-Cabrera, Raul 61
Llanso, David 13

Magdics, Milan 96
Martinez Muñoz, Jonatan 108
Merelo, Juan J. 1, 72
Molina Massó, José Pascual 108
Mora, Antonio 1, 72

Palero, Fernando 84
Pons, Patricia 49

Rodriguez, Antonio 96
Rosa-Pujazón, Alejandro 97

Sagredo-Olivenza, Ismael 120
Sbert, Mateu 96

Tardón, Lorenzo J. 97

Keyword Index

ambient intelligence 49
authoring tool 13
autonomous agent 1

bot 1

challenges 49
computational intelligence 61
computer science 37
creativity 49

designers 13

emotions 37
entertainment 49
entertainment systems 37
evolutionary algorithm 61

finite state machine (FSM) 1
first person shooter (FPS) 1, 108
focalization choice 25
frameworks 120

game aesthetics 61
game domain 13
game tools 120
gamification 72
gesture detection 97

hedonic factors 37
history 96
human behaviour 1
human-computer interaction 97, 108
human-like 1

immersive devices 96
infant education 84
innovative learning 84

kinesthetic learning 84

learning 49, 72

machine learning 97

middleware 120
music interaction 97

narrative composition 25

pedagogy 84
playability 37
procedural content generation 61
programmer 13
psychomotricity 84

real-time strategy game 61

serious game 96
state-based system 1

telling the story of a game 25

Unity3D 120
Unreal Tournament 2004 1
user engagement 49
user experience 37

video games 13, 37, 108
virtual reality 108
visual editor 120
visual learning 84
visualization 72

