XCBR is a workshop aiming to provide a medium of exchange for information about trends, research issues and practical experiences in the use of Case-based Reasoning (CBR) methods for the inclusion of explanations to several AI techniques (including CBR itself).
The success of the intelligent systems has led to an explosion of the generation of new autonomous systems with new capabilities like perception, reasoning, decision support and self-actioning. Despite the tremendous benefits of these systems, they work as black-box systems and their effectiveness is limited by their inability to explain their decisions and actions to human users. The problem of explainability in Artificial Intelligence is not new but the rise of the autonomous intelligent systems has created the necessity to understand how these intelligent systems achieve a solution, make a prediction or a recommendation or reason to support a decision in order to increase users reliability in these systems. Additionally, the European Union included in their regulation about the protection of natural persons with regard to the processing of personal data a new directive about the need of explanations to ensure fair and transparent processing in automated decision-making systems.
The goal of Explainable Artificial Intelligence (XAI) is “to create a suite of new or modified machine learning techniques that produce explainable models that, when combined with effective explanation techniques, enable end users to understand, appropriately trust, and effectively manage the emerging generation of Artificial Intelligence (AI) systems”.
For this purpose, the XCBR workshop is intended to have a structure of activities that helps exchange of ideas and interaction, suited to highlight the main bottlenecks and challenges, as well as the more promising research lines, for CBR research related to the explanation of intelligent systems.
CBR systems have previous experiences in interactive explanations and in exploiting memory-based techniques to generate these explanations that can be successfully applied to the explanation of emerging AI and machine learning techniques.
Research contributions submitted to the workshop will be related to areas that include, but are not limited to, the following:
The Organizing Committee will select a subset of the submitted papers for oral presentation. As ICCBR 2020 will be virtual, ICCBR organizers will provide an online platform for the workshop. Please, refer to the conference website for details.
Participants must register free to join the workshop using the online form available in the conference website.
The XCBR workshop will be held on September 13 with the following schedule:
15:15-15:25 | Welcome and Presentation |
15:25-16:10 | Invited Talk by Mark Keane |
16:10-17:50 | 1st session - 3 papers - Chair: Derek Bridge |
16:10-16:35 | Jesus M. Darias, Belen Diaz-Agudo and Juan A. Recio-Garcia A Systematic Review on Model-agnostic XAI Libraries |
16:35-17:00 | Lawrence Gates and David Leake Evaluating CBR Explanation Capabilities: Survey and Next Steps |
17:00-17:25 | Rosina Weber, Manil Shrestha and Adam Johs Knowledge-based XAI through CBR: There is more to explanations than models can tell |
17:25-17:45 | BREAK |
17:45-19:25 | 2nd session - 4 papers - Chair: Juan A. Recio García |
17:45-18:10 | Prateek Goel, Adam J. Johs, Manil Shrestha, and Rosina O. Weber Explanation Container in Case-Based Biomedical Question-Answering |
17:45-18:10 | Nirmalie Wiratunga, Anjana Wijekoon, Ikechukwu Nkisi-Orji, Kyle Martin, Chamath Palihawadana and David Corsar Actionable Feature Discovery in Counterfactuals using Feature Relevance Explainers |
18:35-19:00 | Arturo Acuaviva Huertos, Inmaculada Pérez Garbín, Belen Diaz-Agudo and Antonio A. Sánchez-Ruiz Explanations on Smart Stores |
19:00-19:25 | Rosina Weber, Prateek Goel, Shideh Amiri and Gideon Simpson Longitudinal Distance: Towards Accountable Instance Attribution |
Each paper is allocated 25 minutes: 20 minutes for oral presentation + 5 minutes for Q&A.
July 2nd, 2021 | Paper submission deadline |
July 19th, 2021 | Notification of acceptance |
July 31st, 2021 | Camera-ready submission |
September 13th | Workshop date |
We invite submissions of two types:
Papers must be submitted in electronic form as PDF. Springer LNCS is the format required for the final camera-ready copy. Authors' instructions along with LaTeX and Word macro files are available on the web at Springer.
Please submit your work via the EasyChair system using the following link and selecting track "Third Workshop on Case-Based Reasoning for the Explanation of Intelligent Systems":
Submit your paper
Here you can find the copyright form for the ICCBR workshops:
Copyright form