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Abstract. In learning by demonstration systems, learning is performed
by an agent observing how an expert behaves in response to a given in-
put. The learning task is more difficult when the agent is situated in a
dynamically-changing environment, of which only a partial view is avail-
able at any time. In this paper we propose a comparison of different
learning by demonstration techniques, namely case-based reasoning, de-
cision trees, support vector machines and naive bayes classifiers, in the
dynamic environment constituted by the RoboCup robotic soccer simu-
lation. An initial look at the results indicate that case-based reasoning
behaves well across all experiments and outperforms the other classi-
fiers. Case-based reasoning even outperforms a decision tree classifier
when learning from an expert whose internal reasoning is represented as
a decision tree.

1 Introduction

Case-based reasoning has been successfully applied to a variety of gaming ap-
plications [1–5] and, more recently, has been used to learn to play a game by
watching an expert play. In these learning by demonstration systems, cases are
generated by observing how an expert behaves in response to the current state of
the game and then behaving similarly when presented with similar game states.
Using case-based reasoning for learning by demonstration has been used in a
variety of games including robotic soccer [6, 7], real-time strategy [8] and Tetris
[9].

In some games, like chess or Tetris, the game playing agent will have a com-
plete world view at all times and will be fully aware of the state of the environ-
ment. However, in many real-world domains the agent will only have a partial
world view. This is common when the agent is able to move around a large,
dynamic environment. If the agent is only able to view a portion of the environ-
ment at a given time, it will never be fully aware of the state of the environment
at all times.

This partial world view can pose a challenge since the environmental stimuli
may not be consistent over time. For example, as the agent moves around the
environment objects may move in and out of its field of vision. Also, there is



no guarantee that any specific object will be visible to the agent at a particular
moment in time. In fact, the agent may never know how many objects of any
kind are present in total in the environment. One approach that has been used
to overcome this is to have other agents provide information about unseen areas
of the environment [3] although this requires multiple cooperating agents that
are adequately distributed over the environment.

This difficulty in dealing with data from a partial world view is not limited to
case-based reasoning, but exists in most learning by demonstration work. Typical
approaches to deal with a partial world view include only using omnipresent
objects as inputs [10], ignoring external stimuli [11], or only reasoning using
commonly visible object [12, 13]. Finding a reasoning technique that does not
require such limitations or restrictions would be a preferable solution as it would
allow for learning by demonstration even if the agent only had a partial world
view.

The goal of this paper will to be compare case-based reasoning to several
other classifiers to determine which is most applicable to a learning by demon-
stration system that receives the sensory information of an agent with a partial
world view as inputs. In Section 2 we describe the raw data available when ob-
serving an expert perform a task and Section 3 presents a method to transform
the raw data so it can be used by common classifiers. Section 4 provides the ex-
perimental results and, finally, Section 5 discusses the conclusions we can draw
from those experiments.

2 Sensory Stimuli

When a software agent or a robot is situated in a large, dynamic environment
it will likely have a partial, and always changing, world view. For example, the
field of vision of a soccer player is shown at three points in time in Figure 1. At
different points in time, as shown in Table 1, the player observes different objects.
Additionally, the player may not have the ability to uniquely identify objects. For
the soccer player, this would mean it would be unable to differentiate between
the various players or know if it is observing the same ball at the different points
in time.

Each sensory stimulus, S, of an agent can then be modelled as a collection of
multi-valued attributes, Vi. If the agent is able to differentiate between n types
of objects, there will be n multi-valued attributes. Going back to the soccer
example, there would be two types of objects: balls and players.

S = {V1, . . . , Vn} (1)

The multi-valued attribute for each type of object contains the objects, of
that type, that are currently visible to the agent. Each of these multi-valued
attributes is an unordered set, with the size of that set being variable. This
variability in set size can cause different types of objects to have different sized
sets but can also cause the same object type to have differently sized sets at
different points in time if objects move in or out of the agent’s field of vision.



Fig. 1. A graphical representation of a soccer player’s field of vision at three different
points in time.

Field of Vision Balls Players

(a) B1 P1, P2

(b) P3, P4, P5

(c) B2 P6, P7

Table 1. The attributes of each field of vision.

3 Data Transformation

Most classification algorithms expect each feature to be single-valued. We there-
fore need to break down our multi-valued features into sets of single-valued ones,
while ensuring a systematic way for each value of a stimulus to be mapped to
an appropriate feature. This can be defined as a problem of matching the vis-
ible objects in a stimulus, S = {o1, . . . , om}, to a set of single-valued features,
F = {f1, . . . , fn} (where m ≤ n).

If, in the soccer example, there were always exactly one ball and one player
visible in every stimulus then a feature vector could be constructed that con-
tained two objects. The first object in the feature vector, representing the ball,
could always be compared to the first object in other feature vectors. However, if
there were multiple instances of each type of object then a correspondence prob-
lem arises. If a pair stimuli each contain two player objects, it then becomes
necessary to determine how those objects will be matched when comparing the
stimuli. For example, we would need to determine if the first player in the first
stimulus would be compared to the first player or the second player in the second
stimulus. This correspondence problem is further complicated by the fact that

Ball Distance Direction

B1 3 0◦

B2 1 10◦

Table 2. The attributes of each ball.



different stimuli could have different numbers of objects of a given type. When
comparing two stimuli this can result in objects that do not have a matching
object to be compared to. An example where this correspondence issue would
be a problem is in a decision tree. If a node of the tree makes a decision based
on a single object of a specific type, there is no way to know which object of
that type should be used.

There has been some work examining how data with multi-valued attributes
can be used in a decision tree classifier [14–16]. In these approaches, when travers-
ing the tree all possible valid paths are considered. When a test input contains
a multi-valued attribute, any decisions based on that attribute are made using
all of the values of the attribute so that several paths through the tree are taken
simultaneously. This results in examining a series of paths through the tree that
only involve a single value of each attribute and then combining the results.
Since these approaches only examine a single object of each type during each
traversal of the tree, they are not applicable in applications where information
from multiple values of a multi-value attribute are needed. In the soccer exam-
ple, this implies that only a single player object would be considered during each
traversal of the decision tree, so no decisions involving multiple players would
be possible.

Another possible approach would be to convert Table 1 into first normal
form. This would involve replacing the Balls and Players columns with separate
tables that contain a single row for each object. Using normalized relational
tables, inductive logic programming (ILP) [17] could be used for multi-relational
classification [18, 19]. However, similar to the decision tree techniques described
above these, ILP approaches treat each row containing a multi-valued attribute
as multiple rows containing single-valued attributes, thereby not allowing all of
the multiple values of an attribute to be used simultaneously.

In order to make this data usable by most classifiers, we will transform the
data into a form that mirrors the biases imposed by our existing case-based rea-
soning system [6, 7]. The case-based reasoning system adds two primary biases:

1. Set Ordering: In order to provide an ordering to the multi-valued at-
tributes, objects are matched with similar objects when comparing two sen-
sory stimuli. If there are an unequal number of objects then some objects
may not have a match. This does not provide a fixed ordering of the objects,
since the matching can be different depending on the other sensory stimulus
that is being compared to.

2. Extra Objects: When calculating the distance between two sensory stim-
uli, an object that does not have an appropriate matching object in the
other sensory stimulus results in a penalty value being added. This penalizes
stimuli containing a different number of objects.

We will attempt to keep similar biases in the transformed data so as to avoid
giving an advantage to any of the classifiers during the experimental comparison.
The data transformation involves the following steps:



1. Fixed Sized Feature Vector: Each sensory stimulus will be represented
as a feature vector of a fixed length. Initially, a set of training stimuli will be
examined to determine the maximum size, Mi, of each of the multi-valued
attributes. The feature vectors will then be created so that each attribute is
able to contain the maximum number of values. If there are N attributes, the
vector will be able to hold

∑N
i=1 Mi objects. Since each object is complex and

has both a distance and a direction, relative to the agent, the feature vector
will actually be twice that size (V ectorlength = 2

∑N
i=1 Mi). For example,

the first 2 × M1 values of the vector will contain data related to the 1st
multi-valued attribute.

2. Object Ordering: Objects are ordered by sorting them based on their
distance from the agent. Objects that are closer to the agent will be placed
in the feature vector before more distant objects of the same type (when
two feature vectors are compared the objects closest to the agent will be
compared to each other, second closest objects compared, etc.). This does
not allow for more precise object matching, since the ordering is performed
in advance, but is similar to the matching performed by our case-based
reasoning system since it is computationally inexpensive and can be used in
real-time.

3. Normalization: Similar to how a training set was mined to find the max-
imum size of each multi-valued attribute, it will also be mined to find the
minimum and maximum values of the object distances and directions. These
maximum and minimums will be used to normalize the distances and direc-
tions, between 0 and 1, so that all elements of the feature vector are of a
similar scale.

4. Padding: If a sensory stimulus contained fewer than the maximum number
of values for any of the multi-valued attributes, the remaining entries in
the vector will be padded with values that represent unseen objects. These
values are used to mirror the penalty values used by the case-based reasoning
system, since a visible object will have values than are dissimilar to the
unseen object values.

4 Experimental Results

Our experiments will look to compare the performance of our existing case-based
reasoning system [6, 7] with three popular classification methods: decision trees,
support vector machines and naive bayes. For these three algorithms the Weka
[20] implementations will be used1.

The data will be generated by observing simulated robotic soccer players in
the RoboCup Simulation league [21]. Two teams of players will be observed:
Krislet agents [22] and CMUnited agents [23]. Krislet agents behave in a simple
manner. They turn until they can see the soccer ball and then run toward the
ball. When they get to the ball they attempt to kick it toward their opponent’s
1 The J48 algorithm for the decision tree, SMO algorithm for support vector machines

and NaiveBayes algorithm for naive bayes.



goal. Krislet was selected because it is a simple, reactive team that should be
easily represented as a decision tree. CMUnited is far more complex and was
the former champions of the RoboCup Simulation League. They use a layered
learning architecture and a number of strategies including formation strategies
and agent communication. CMUnited players can have multiple states of be-
haviour and maintain internal models of the world, so their behaviour is likely
more similar to that of a human expert.

The agents were observed while playing games of simulated soccer. During
the games, each team was comprised of 11 players per team and the opposing
team was always made of Krislet agents. Both Krislet and CMUnited agents
were observed playing 25 complete games of soccer resulting in approximately
100000 observations being collected per team. Each classifier was trained using
5000 randomly selected observations2 and tested using 10-fold cross validation.
This testing was performed 25 times, for both the Krislet and CMUnited data,
using each classifier.

The complete set of collected observations was mined in order to determine
the maximum number of objects of each type visible during an observation and
the maximum and minimum distance and direction values to use for normal-
ization. The maximum and mean occurrences of each type of object3, in the
Krislet data, are shown in Table 3. Therefore, each stimulus for the Krislet data
will be represented by a vector of length 114 (57 object each with a distance
and direction value). The CMUnited data is similar to the Krislet data except
the maximum number of flags is slightly higher. This is because the CMUnited
agents do not use the standard sized field of vision, but instead use a wider
field of vision (but this wider field of vision also leads to noisier estimates of the
position of objects).

The feature vectors were padded with distance and direction values of -1
when fewer than the maximum number of objects, of a specific type, were visible.
This value was chosen since it will never occur in any visible objects since they
are normalized between 0 and 1.

Lastly, each of the classifiers had its performance optimized using feature
selection. Using a methodology similar to that used in previous work [7], the
most important types of objects were found for each classifier. Data from any
objects that did not positively affect the classification performance was removed.
It should be noted that, with only a few exceptions, each classifier selected
the same features to use and those features were consistent with our previous
studies4.

2 Approximately the number of observations collected during a single game.
3 The objects in simulated RoboCup soccer are: soccer ball, flags, boundary lines,

goal nets, teammates, opponents and unknown players (their team is unknown due
to noise).

4 Most classifiers found the ball to be important for Krislet and the ball, goal and
flags to be important for CMUnited. However, naive bayes also found teammates to
be important for both Krislet and CMUnited and did not find the goal important
for CMUnited.



Ball Flag Line Goal Team Opp. Unk. Total

Max 1 16 1 2 10 11 16 57
Mean 0.6 5.8 1.0 0.5 4.4 3.2 1.8 17.3

Table 3. The maximum and mean occurrences of each type of object in the Krislet
data.

4.1 Results

Our results measure the ability of each classifier to predict the action the expert
would have performed given a similar stimulus. The possible actions are kicking,
dashing and turning. Each action also has associated parameters, like the dashing
power, but we ignore those and only look to get the action correct. For each
classifier we measure the performance using the f-measure. The f-measure, which
is a function of the precision and recall of each action, was selected because it
is an acceptable metric to use when data is extremely imbalanced (only around
0.2% of the data is for the kick action).

Table 4 shows the average f-measure values over the 25 tests. Examining
the results from Krislet, we can see that both case-based reasoning (CBR) and
the decision tree approach perform best. It was expected that the decision tree
approach would work well, since the reasoning logic of Krislet can be represented
as a decision tree, but it is interesting to note that the CBR approach actually
performs slightly better (although not a statistically significant difference).

One other area to consider when comparing the decision tree and the CBR
approach is that the CBR approach makes use of a k-nearest neighbour search.
During each classification, the CBR approach will need to compare the input
to the training instances in order to find similar neighbours. Operating in a
real-time environment, like robotic soccer, means that there will be a constraint
placed on the execution time of the search which may limit the number of training
instances that can be used [7]. The decision tree, which does not employ such an
expensive search, might then have a benefit in being able to use more training
data than the CBR approach. Figure 2 shows the change in performance of CBR
and the decision tree as the size of the training set is increased. From this we
can see that the decision tree does not show any noticeable improvement with
more training instances whereas the CBR approach does. This shows that the
decision tree is unable to surpass the performance of the CBR approach, even
with access to more training data.

CBR Decision Tree SVM Naive Bayes

Krislet 0.83 +/- 0.002 0.82 +/- 0.005 0.70 +/- 0.003 0.66 +/- 0.017
CMUnited 0.61 +/- 0.002 0.42 +/- 0.007 0.47 +/- 0.011 0.16 +/- 0.024

Table 4. The f-measure results using each classifier.



Fig. 2. Change in f-measure as number of training instances is increased.

An initial look at the results in Table 4 indicate that the CBR approach
clearly outperforms the other classifiers on the CMUnited data. While we have
not thoroughly looked at optimizing the parameters of any of the algorithms, it
is promising to see that CBR outperforms the others using default parameters.
This is likely due to the complexity of the reasoning used by CMUnited. Whereas
the Krislet agent only reasons using the soccer ball and opponent’s goal net, the
CMUnited agents use a variety of objects. For the balls and goals, there are only
ever one or two instances of those objects. Whereas with flag objects there are
many of them, so more objects influence the classification process. Additionally,
the data does not contain all of the information the CMUnited agents use during
reasoning. Things like internal states and inter-agent communication are not
included in the data so the stimuli may become more difficult to separate using
rules or generalizations. The benefit of CBR is that it keeps the data stimuli
unchanged, so important information is not discarded as noise.

Further examination of the results show that the decision trees generated on
the Krislet data only contain a few decision nodes. These decisions are quite close
to the decisions that the Krislet agent actually uses during reasoning, however
it often underestimates the decision bounds resulting in some misclassification
during testing. On the other hand, with the CMUnited data the decision tree
uses hundreds of decision nodes. The decisions are often not generalizations of
the data, but instead make rules that completely describe individual training
instances. Looking at the support vector machines and naive bayes, they also
do fairly well on the Krislet data but have significant trouble on the CMUnited



data. Similar to the decision trees, these approaches tended to over train the
class boundaries based on the training instances.

While the results we have presented are not from an exhaustive comparison
of all possible classifiers, or all combinations of algorithm parameters, they do
show a case-based reasoning approach performs well when learning from agents
of various complexities. More importantly, CBR is competitive with a decision
tree classifier when learning from an agent who reasons using a decision tree.

5 Conclusions

In this paper we examined the data available when an agent only has a partial
view of the world and how the objects in its field of vision can change as the agent
moves around the environment. This only gives the agent limited information
about what it can see and causes a correspondence problem when attempting to
use this information in learning by demonstration systems. The primary reason
for this correspondence problem is an inability to uniquely identify objects, so
the agent only knowns what type of object it sees, rather than which object of
that type it sees.

Our results show that using case-based reasoning on such agent sensory data
outperforms a variety of other classification algorithms when learning by ob-
serving a simulated soccer agent. Our experiments did not attempt to perform
an exhaustive comparison of all possible classifiers or use all possible algorithm
parameters, but instead looked to show that our case-based reasoning system
performs well on both simple and complex data and requires no transformation
of the data. Even if the agent being learnt from can easily be represented by
a set of rules or a decision tree, the CBR approach still performs as well as a
classifier more suited to that form of learning.

An additional benefit of an instance based learning approach, like case-based
reasoning, is that the input data can be compared with actual stimulus rather
than generalizations of the stimulus. This is important when ordering the multi-
valued attributes since the objects can be matched using more sophisticated
matching algorithms rather than being ordered using a fixed ordering rule (like
being ordered by distance to the agent). These findings lead us to believe case-
based reasoning is an appropriate technique to use when learning by demon-
stration as it can be used regardless of the complexity of teacher and allows for
the use of all knowledge contained in the training data since no generalization
occurs.
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