
Authoring Behaviours for Game Characters Reusing
Automatically Generated Abstract Cases ?

Antonio A. Sánchez-Ruiz, David Llansó,
Marco Antonio Gómez-Martı́n and Pedro A. González-Calero

Dep. Ingenierı́a del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

email: {antonio.sanchez,llanso,marcoa,pedro}@fdi.ucm.es

Abstract. Authoring the AI for non-player characters (NPCs) in modern video
games is an increasingly complex task. Designers and programmers must collab-
orate to resolve a tension between believable agents with emergent behaviours
and scripted story lines. Behaviour trees (BTs) have been proposed as an expres-
sive mechanism that let designers author complex behaviours along the lines of
the story they want to tell.
On the other hand, BTs appear as a too complex mechanism for non program-
mers. In this paper, we propose the use of abstract cases automatically gener-
ated through planning to assist designers when building BTs. In order to make
this approach feasible within state-of-the-art video game technology, we gener-
ate the planning domain through an extension of the component-based approach,
a widely used technique for representing entities in commercial video games.

1 Introduction

According to the number of papers dedicated to the subject in the editions 3 and 4 of
the AI Game Programming Wisdom [8, 9], Behaviour Trees (BTs) are the technology
of choice for designing the AI of NPCs in the game industry. BTs are proposed as an
evolution for hierarchical finite state machines (HFSM) intended to solve its scalability
problems by emphasizing behaviour reuse.

Behaviour trees have been proposed as an expressive mechanism that let designers
author complex behaviours along the lines of the story they want to tell, but at the same
time, BTs appear as a too complex mechanism for non programmers [2, 3]. Commercial
game development teams usually build some support tools in the form of tree editors,
where the designer can choose from a set of predefined composite nodes, conditions to
be checked, and basic actions that can be included in the tree. Nevertheless, in practice,
there is a tension between the freedom that the designers require to include their narra-
tive in the game and the effort required from programmers to debug faulty AI authored
by non-programmers.

In this paper we propose the use of ontologies and planning techniques to assist
game designers when authoring the AI for non-player characters. The design of BTs

? Supported by the Spanish Ministry of Science and Education (TIN2006-15140-C03-02 and
TIN2006-15202-C03-03)

is usually an interactive process in which the designer incrementally adds new tree
branches to make the NPC react to new situations. We propose an automatic way to
compute abstract cases or solutions to those new situations, that designers may adapt
before incorporating them to the current BT.

A drawback for using declarative knowledge-intensive AI techniques in games is
the additional effort required to model the domain. In this case we require having a
model of the actions that NPCs can do in the game world. In order to close this gap
between academic and industrial game AI, we propose generating the planning domain
through an extension of the component-based approach for representing entities, which
is widely used in commercial video games.

The rest of the paper runs as follows. Next Section introduces the two techniques
from commercial video games incorporated into our approach: component-based game
entities, and behaviour trees. Next Section, describes the main ideas of our proposal for
authoring BTs from automatically generated abstract cases. Next two Sections provide
the details and exemplify the approach, first describing the generation of the planning
domain and then the use of abstract cases to author behaviour trees. Last Section reviews
related work and concludes the paper.

2 Background

2.1 Components

In the development of a virtual environment, the layer responsible of the management
of the entities is usually created using an object-oriented programming language such as
C++. Over the years this object-management system has been based on an inheritance
hierarchy, where all different kinds of entities derive from the same base class often
called CEntity.

Some of the consequences of this extensive use of class inheritance are, among
others, an increase in the compilation time [5], a code base difficult to understand and
big base classes. To mention just two examples, the base class of Half-Life 1 had 87
methods and 20 public attributes while Sims 1 ended up with more than 100 methods.

Due to all these problems developers tend to use a different approach, the so called
component-based systems [13, 10]. Instead of having entities of a concrete class which
define their exact behaviour, now each entity is just a component container where every
functionality, skill or ability that the entity has, is implemented by a component. From
the developer point of view, every component inherits from the IComponent class or
interface, while an entity becomes just a list of IComponents.

As entities are now just a list of components, the concrete components (or abilities)
that constitute them may be specified in an external file that is processed in execution
time. This approach eases the creation of new kind of entities, because it does not re-
quire any development task but just the selection of the different skills we want our new
entity to have from a set of components. In order to allow fine-grained adjustment of
the behaviour (or skills) of different entities, their definition may also set the values of
different attributes that components use as parameters of their behaviours.

Both, the list of components of an entity and the initial values of their parameters,
are usually stored in a separated file that can be seen as the file that describes the main

<b l u e p r i n t >
<e n t i t y t y p e =” g o b l i n ” ontType =” Gobl in ” p a r e n t O n t =” Monster”>

<components l i s t =” Take , MoveTo , TakeCover , MeleeAt tack ,
LongRangeAttack , Charge−At , . . . ” / >

<a t t r i b u t e s >
< a t t r i b name = ” s t r e n g t h ” v a l u e = ” weak”/>
< a t t r i b name = ” weapon−t e c h ”

v a l u e = ” r u d i m e n t a r y , e l a b o r a t e ”/>
< a t t r i b name = ” h e i g h t ” v a l u e = ” s h o r t ”/>
. . .

</ a t t r i b u t e s >
</ e n t i t y >
. . .
</ b l u e p r i n t s >

Fig. 1. Partial list of blueprints file

characteristics of every entity. That file, usually known as the blueprint, is parsed by the
game engine at the beginning of its execution. When the game loads a new level from
the map file, it iterates over the list of the level entities and uses the blueprint file for
creating and launching them.

Figure 1 lists a portion of one of such files that describes the goblin entity. The
entity description of the entity has two main parts, the list of components and the
list of attributes. Goblin have components that allow them, among other things, go
through the environment and pick up objects. All these skills are parameterized in
the attributes section. For example, the strength attribute influences the Take
component, while the height predefines the kind of objects the TakeCover compo-
nent should consider as protections.

2.2 Behaviour Trees

BTs define an AI driven by goals, in which complex behaviours can be created com-
bining simpler ones using a hierarchical approach. Nodes in a BT represent behaviours,
where an inner node is a composite behaviour and a leaf in the tree represents an action.
To promote reusability, behaviours do not include the conditions that lead to transi-
tions. Those conditions are represented as guards in nodes of the tree so that the same
behaviour can be used in different contexts with different guards. To further promote
reusability, behaviours may be parameterized, so that in a particular context parameters
are bound to actual values in the map. This way, a node in such a behaviour tree is
represented through: a behaviour (be it composite or a primitive action); bindings for
the parameters of that behaviour; and a guard condition that must be true at run time for
that behaviour to be activated.

From the different models of execution for BTs, we choose one where a BT has
an active branch, going from the root to a leaf, of behaviours being executed. Every
tick of the game, some guards may get evaluated and some behaviours may finish, be it

Fig. 2. Ontology that defines the domain vocabulary

successfully or with failure, eventually leading to the expansion of a new active branch
in the tree.

Although more complex types of composites are described in the literature, for the
goals of this paper we only require three types of composites: sequences, static priority
list and dynamic priority list. A sequence composite behaviour executes its children in
the order they are defined, succeeding when every children succeeds and terminating
with failure whenever one of the children fails. Children behaviours of a sequence are
not guarded by conditions. A static priority list is a composite node that evaluates its
children guards in order and activates the first child whose guard is true. A dynamic
priority list, in its turn, re-evaluates the guards of its children with higher priority (the
first child being the one with highest priority) than the active one, and switches to a
higher priority child whenever possible.

BTs provide designers with an abstraction that allow them to treat a tree as a new
complex behaviour that may be attached in other more general BTs. In that sense, during
development time designers create a collection of basic behaviours in form of BTs,
which are later attached to the branches of different BT for more than one entity. In
order to improve the reusability, BTs may be parameterized. For example, designers
may build a BT that an enemy using an available weapon attacks and after that picks an
item up.

3 Generating Abstract Cases to Support BT Creation

The creation of BTs is a difficult task that designers usually perform by means of a try-
and-fail process. The consequence is that the final quality of the BTs depends to a large
extent upon the ability and experience of designers. Our proposal consists in helping
them by means of abstract cases that are automatically computed using planning and
ontologies. This way, we suggest sets of solutions that designers can adapt and add to
the current BT.

In order to use planning we need to describe the domain and planning actions using
a formal language.The description of a planning domain includes two main parts: (a)
the description of the predicates that conform the domain vocabulary and how they are

Fig. 3. Interactive process to create Behaviour Trees

related among them, and (b) a set of planning actions. We propose the use of ontologies
to represent the first part, that is, the vocabulary and the domain constraints. Figure 2
shows an example of ontology that intuitively describes different components of a game.
The set of planning actions, on the other hand, is strongly related to the available basic
behaviours in the game. Planning actions are described in terms of preconditions and
effects using the vocabulary available in the domain ontology.

Figure 3 summarizes our proposal to support the AI designer during the creation of
BTs. By means of a graphical interface, that can be a simplified version of the game
interface, the designer sets up a particular game scenario and some goals. Next, we au-
tomatically generate the equivalent symbolic description using the planning language,
and by means of a planner, we compute all the possible plans that solve the problem.
The planner that we use, DLPlan1, is able to generalize the resulting plans using the
domain ontology. This way, plans presented to the designer are not only specific plans
for the current scenario but general strategies or abstract cases that can be reused in a
broader set of situations (this will be described in detail later in section 5). Then the
designer can use those cases to complete the BT that is currently building. Let’s re-
member that BTs are useful in a broad set of scenarios and thus, this is actually an
interactive process in which the designer proposes different scenarios to the system and
incrementally completes the BT using the retrieved solutions.

Finally, the process by which abstract cases are integrated to the current BT is,
nowadays, manual, the designer is the only responsible of changing the BT to add the
new branches. It is important to remark that the planner works with a limited model of
the game, while the designer can take into account much more factors (like story plot
or special situations) in order to select behaviours, modify preconditions under certain
circumstances and set the priority of each alternative. The planner output, therefore,
only shows different solutions that the designer must modify, validate or reject. Anyway,
preconditions of the planning operators and the generalized plans computed by DLPlan
are usually a good source of inspiration to define the guards of new nodes in the tree.

4 Generating the Planning Domain

To be able to use planning techniques, we need a symbolic representation of the world as
well as the actions that each type of entity can perform. The basic approach is to create

1 Freely available at http://sourceforge.net/projects/dlplan/

this description from scratch. However, this information is, at least partially, already in
the C++ classes that programmers have to implement to develop the game and in the
configuration files that define the different types of entities.

Our proposal is to use this information in order to automatically generate all the
information required by the planner. In order to do that we have to minimally extend
the information contained in the components implementation and blueprint file.

The process starts with a base domain ontology that can be seen as the basic vocab-
ulary of the game genre and it is independent of the concrete game being developed.
This domain ontology is taken for granted and it includes the basic vocabulary for de-
scribing the new type of entities and actions that the game will incorporate. In other
words, we start with an ontology similar to the one in figure 2 but without the leaves
that correspond to the concrete types of entities in the game.

In order to populate the ontology with the new entities, we use the blueprints file.
As we showed in section 2.1, this file has an entry per game entity, describing the set of
components and attributes it has. The only new information we need to add to this file
is two special fields in every entity, ontType and parentOnt, that set the corresponding
symbolic name for this entity in the ontology and the branch or branches in which it
must be added. This way, we can now add automatically new concepts in the ontology
to represent these new types of entities.

Once the entity has been added to the ontology, we can also add information about
their properties and the actions that they can carry out. This is done iterating over the
list of components that the entity has, asking them which information has to be in-
jected to the corresponding ontological entity. As an example, we would add the de-
scription of the Goblin entity that appears in figure 1 with canWalk, canTake,
hasStrength.weak and other properties.

As regards the operators the planner uses, we can extract them from the compo-
nents. Most of the components are in fact the responsible of the execution of one or
more actions over the environment. They first check if the action can be carried out
and then execute it. Our method of automatically generating the planning operators
consists in extending the components with an extra task: their self-description. In that
sense, every component that represents a behaviour must be able to provide, through its
programming interface, the planning action that describes it.

Figure 4 shows the operator description that components MoveTo, TakeCover
and Take generate. The preconditions are specify in terms of the entities’ properties.

5 Plan Generation and BT Authoring

This section describes how to build BTs using our approach, i.e., taking advantage
of planning techniques to support designers during the process. Next, we introduce a
concrete example in which a BT must be created to control a greedy goblin that has
entered in a room to discover a diamond in the opposite corner. We will assume the
existence of a graphical interface (As complex games usually provide [6]) to define
different initial states and goals without having to deal with logical predicates but just
setting items and units in the map and defining theirs attributes.

WALK−TO(?who: alive, ?target: entity)
vars : ?r
pre : canWalk (?who), inRoom(?who, ?r), inRoom(?target , ?r), aloneInRoom(?who)
post : nextTo(?who, ? target)

TAKE−COVER(?who: alive, ?c: cover)
vars : ?r , ?s1 , ?s2
pre : canTakeCover(?who), uncovered(?who), inRoom(?who, ?r), inRoom(?c, ?r),

cover(?c), hasSize(?who, ?s1), hasSize(?c , ?s2), lessEqSize (?s1, ?s2)
post : covered(?who)

TAKE(?who: alive, ?what: resource)
vars : ?w, ?s
pre : canTake(?who), nextTo(?who,?what), hasWeight(?what, ?w),

hasStrength (?who, ?s), enoughStrength(?s , ?w)
post : inInventary (?who, ?what)

Fig. 4. Planning operators corresponding to some basic behaviours.

Let’s start with the simplest situation, where the goblin and the diamond are in the
same room and there are no enemies near. This goblin is a warrior well armed with a
short sword, a small knife, a short bow and a sling. The room, in turn, contains some
furniture: a table, two chairs and a bookcase. Although the designer does not know it,
behind the scene this information is been automatically translated to a symbolic repre-
sentation for the planer using the vocabulary in the ontology. Now, when the designer
defines the goal (the goblin gets the diamond), the planner shows the only possible plan:
walk until the diamond location and take it:

1. WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

Actually, using the abstraction capabilities of DLPlan we are able to point out that
this plan is applicable in several more scenarios, because the plan only requires goblin1
to be an entity that can walk and take things and that is alone in the room, and dia-
mon1 to be a small item. The generalization process followed by DLPlan to reach this
conclusion is based on the ontological domain definition and it is described in [11].

Using this information, the designer builds the red branch, with dashed borders, of
the BT shown in figure 5, that represents the only plan available in this scenario. It is
important to mention that plans generated using the planner are sequences of actions
that correspond to the leaves of the BT. The definition of internal nodes in the tree to
group basic actions and to represent different alternatives is responsibility of designers.

Next, the designer must complete this basic BT to make it useful in other scenarios
as well, for example when there is an enemy in the same room that has already detected
the goblin. This time the planner computes several more possible plans:

1. ChargeAt(goblin1,sword1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

Fig. 5. Example of BT creation from different plans

2. ChargeAt(goblin1,knife1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

3. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

4. TakeCover(goblin1,table1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

5. TakeCover(goblin1,bookcase1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

6. TakeCover(goblin1,bookcase1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

It is important to mention that during the computation of these plans the planner has
performed some interesting inferences using the domain knowledge. For example, the
planner has used the table and the bookcase as possible covers and different weapons
have been classified in melee or long range weapons. With those inferences, the six
generated plans are in fact two different strategies parameterized with different values:
charge against the enemy and then take the diamond; or look for a cover, attack the
enemy from the distance and then take the diamond:

1. ChargeAt(goblin1,sword1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

2. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

Again, using the abstraction capabilities of DLPlan, those plans are applicable in
more general scenarios than the current one, in this example sword1 represents any
melee weapon and bow1 any long range weapon.

The computation of plans and the later generalization is performed behind the scene,
and so, the designer only sees the generalized plans. Then, he has to complete the previ-
ous behaviour tree to incorporate the new possibilities. The resulting BT is built adding
the orange branches, with continuous borders, shown in figure 5. Basically, the previous
branch is only applicable if there are no enemies in the room, and in other case we have
to kill the enemies first.

Finally, the designer wants to complete the BT with new branches that will be exe-
cuted when there is an enemy in the room but he has not detected the goblin yet. This
time, the planner computes several solutions that can be summarized in three strategies:
(1) take a cover, attack from the distance, go until the diamond and take it; (2) sneak
until the enemy, stab him, go until the diamond and take it; and (3) sneak until the
diamond and take it (without killing the enemy).

Next, the designer adds these new alternatives to the BT, obtaining something sim-
ilar to the figure 5 . In this case, the strategy of looking for a cover and attacking using
a long range weapon was already in the previous BT so we only need to add the other
two plans (green branches with dotted borders).

6 Related Work and Conclusions

Authoring the AI for non-player characters in modern video games is an increasingly
complex task. Behaviour Trees, as successor of Hierarchical Finite State Machines, are
a promising and emergent technology to represent the complex behaviours that the mar-
ket demands. However, designers that have to build these BT usually do not have a pro-
gramming background and do not find them intuitive enough. Consequently, we have to
provide the designers with good tools to support the BT creation process. In particular,
we propose the combination of planning and ontologies to propose abstract cases to the
designer, that will incorporate them into the BT after the required adaptations.

We have described an interactive process in which the designer proposes different
scenarios and goals and the planner computes all the possible solutions and generates
abstractions for the initial state. Then the designer uses that information to build a more
robust and versatile BT that represents different plans as different branches. The use
of off-line planning techniques, let us to explore the space of design possibilities, and
does not have the computational cost of planning during the game execution. The use
of ontologies, on the other hand, provides an intuitive way to describe scenarios and
interact with the planner. In order to make this approach feasible within state-of-the-art
video game technology, we generate the planning domain through an extension of the
component-based approach for representing entities which is widely used in commer-
cial video games.

Related approaches have been described in [7, 4]. Pizzi et al. [7] use a planner to
compute every combination of actions to solve each level, and show them to the human

designer like a comic, to let him check if there are any gaps in the storyline or in the
design of the level. Another related work is the one described in [4] where the authors
propose the use of planning to coordinate the behaviours for NPCs that are not main
characters in the storyline of role games. Our approach does not generate the full be-
haviour for an NPC as [4], but proposes particular plans for particular situations, and
the human designer is responsible for incorporating those traces into the tree he is de-
signing. On the other hand, we differ from [7] because we intend to assist the designer
on building the behaviour for an NPC, instead of supporting a kind of validation of a
game level by exploring the solutions that the player may try, so that the designer may
choose to re-design the level in order to avoid certain solutions.

Regarding CBR in games, most of the works in literature focus on how to use cases
during the execution of the game, either to improve the quality of the final AI or to im-
prove the performance of the AI engine. In [1], cases consist of strategies applicable to
specific situations in the real-time strategy game Stratagus. Using these strategies, they
were able to beat opponents considered “very hard”. Another interesting work presents
the multi-layered architecture CARL [12], that combines CBR and reinforcement learn-
ing to achieve a transfer-learning goal in another real time strategy game.

As future work we will study how to improve the interface between the planner
and the BT authoring tool, and how to semi-automate the translation process between
both representations. We are also interested in developing debugging tools to help the
designer to understand the inferences that the planner does why the planner proposes
some solutions and rejects others in particular scenarios.

References
1. D. W. Aha, M. Molineaux, and M. J. V. Ponsen. Learning to win: Case-based plan selection

in a real-time strategy game. In ICCBR, pages 5–20, 2005.
2. D. Isla. Handling complexity in the Halo 2 ai. In Game Developers Conference, 2005.
3. D. Isla. Halo 3 - building a better battle. In Game Developers Conference, 2008.
4. J. P. Kelly, A. Botea, and S. Koenig. Offline Planning with Hierarchical Task Networks in

Video Games. In AIIDE, 2008.
5. J. Lakos. Large Scale C++ Software Design. Addison Wesley, 1996.
6. M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker.

Scriptease: Generating scripting code for computer role-playing games. In ASE, pages 386–
387, 2004.

7. D. Pizzi, M. Cavazza, A. Whittaker, and J.-L. Lugrin. Automatic Generation of Game Level
Solutions as Storyboards. In AIIDE, 2008.

8. S. Rabin, editor. AI Game Programming Wisdom 3. Charles River Media, 2006.
9. S. Rabin, editor. AI Game Programming Wisdom 4. Charles River Media, 2008.

10. B. Rene. Game Programming Gems 5, chapter Component Based Object Management.
Charles River Media, 2005.

11. A. A. Sánchez-Ruiz, P. A. González-Calero, and B. Dı́az-Agudo. Abstraction in Knowledge-
Rich Models for Case-Based Planning. In Proc. of International Conference on Case-Based
Reasoning, 2009.

12. M. Sharma, M. Holmes, J. Santamaria, , A. Irani, C. Isbell, and A. Ram. Transfer learning
in real-time strategy games using hybrid cbr/rl. In Proc. of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), 2007.

13. M. West. Evolve your hiearchy. Game Developer, 13(3):51–54, Mar. 2006.

